Realization of a Programmable Rank-Order Filter Architecture Using
Capacitive Threshold Logic Gates

1. Hatirnaz, F. K. Giirkaynak and Y. Leblebici

Worcester Polytechnic Institute
Department of Electrical and Computer Engineering
Worcester, MA 01609-2280

Abstract

‘We present a new architecture to realize a fully pro-
grammable rank order filter (ROF'), based on Ca-
pacitive Threshold Logic (CTL) gates. Variants of
ROPFs, especially median filters, are widely used in
digital signal and image/video processing and image
enhancement. The CTL realization of the majority
gates used in the ROF architecture allows the filter
rank and the window size to be user-programmable,
using a much smaller silicon area. The overall fil-
ter architecture is also simplified significantly, com-
pared to conventional realizations of digital median
filters.

1 Introduction

The rank order filter (ROF) is a non-linear digital filter
which determines the r-th ranking element in a given win-
dow consisting of binary encoded input words. Variants
of ROFs are widely used in digital signal and image/video
processing. Especially, median filters have found many ap-
plications in digital image enhancement, such as eliminating
blur in the edges and suppressing noise in an image [1][2].

In recent years, some innovative structures for rank-order-
filters have been presented , which are mostly based on
majority-decision algorithms [3][4]. Yet, the majority func-
tion is typically hard to realize using conventional Boolean
building blocks, since it requires a large number of gates
and a large logic depth. Consequently, such structures suf-
fer from speed and area limitations, especially if the window
size becomes larger than 10 words.

In this paper, we present a new architecture to realize a fully

0-7803-5471-0/99/$10.00©1999 IEEE

programmable ROF, based on Capacitive Threshold Logic
(CTL) gates. The CTL realization of the majority gates
[5] used in the ROF architecture allows the filter rank and
the window size to be user-programmable, using a much
smaller silicon area. The overall filter architecture is also
simplified significantly, compared to conventional realiza-
tions of digital median filters. The outline of a simple bit-
serial algorithm for rank ordering is presented in Section 2.
In Section 3, the implementation of a programmable ROF
architecture is discussed. The conclusions are summarized
in Section 4.

2 The Rank Ordering Algorithm

2.1 Algorithm Description

A bit-serial algorithm first proposed by Kar and Pradhan
[6] was chosen to implement the programmable rank-order
filter using capacitive threshold logic gates. In this algo-
rithm, the problem of finding a rank-order-selection for n-
bit long words is reduced to finding out “n” rank-order-
selections for 1-bit numbers.

The algorithm starts by processing the most significant bits
(MSB) of the m=(2N + 1) words in the current window
to yield the MSB of the desired filter output. This out-
put is then compared with the other MSBs of the window
elements. The vectors whose MSB is not equal to the fil-
ter output have their MSB propagated down by one posi-
tion, replacing the less significant bits of the corresponding
words. This process is continued for the following bits.
Thus, any bit that is not equal to the corresponding stage
output is propagated down to the lesser significant posi-
tions, until the least significant bit is processed.

I-435

The algorithm can be summarized as follows :

begin
for 1 :=
begin
-- sum[l] is the sum of the
-- l-th bit of all the numbers
sum[1] := 0;
for j := 1 to s do
sum[1] := sum[1l] + ajl;
if sum[l] <= s - i then
-- selecting the i-th ranked bit
selector[1] := 0;
else
selector[l] := 1;
-- where the selector[l] is the l-th
-- bit of the i-th ranked number
for j := 1 to s do
begin
if aj; != selector[l] then
for q := (1 + 1) to n do
ajg 1= aji;

1 to n do

1]

end
end
i-th-ranked-number := selector;
-- selector is the concatenation of
-- selector[1],...,selector[n]
end

Table 1: An example of the rank-ordering algorithm. Val-
ues in parantheses denote values being propagated down to
lesser significant positions.

Words : #1 | #2 | #3 | #4 | #5 | Result
B;(MSB) 1 0 0
Bg 0(1) 1 (1) | 1 1 1
B; 1(1) 1 1) | 1 0 1
B, 1(1) | 0 |o(1)| 1 |00 1
B; 1(1) | 1(0) {0(1) | O | 1(0) 0
B, 0(1) | 0(0) | o(1) [1 | o(0) 1
B, 1(1) [0(0) [(1) | 0 | 1(0) 0
Bo(LSB) | 0(1) | 1(0) [0(1) | 1 | 1(0) 1

Table 1 shows an example where, five 8-bit words (denoted
#1 through #5 with decimal values of 184, 105, 194, 117
and 75 respectively) are being rank-ordered using the algo-
rithm given above. The window size is m=5 and the rank

is r=3, indicating that the third smallest among these five
numbers is being found in 8 steps. Note that the main bit-
level operation at each step amounts to a majority (rank)
decision among n bits of the same bit-plane. In the ex-
ample, the result corresponds to word #4 which has the
decimal value of 117.

2.2 Structure and Realization of the
Algorithm

The bit-serial operation flow of the algorithm described
above suggests a very simple bit-level pipelined data path
architecture.

The hardware implementation of the ROF algorithm con-
sists of two main blocks:

1. The Modifier/Selector(propagator) block whose func-
tion is to store and to shift the actual data and to
calculate the selector signal for the next processing
block.

2. The Majority or Rank Decision block which deter-
mines the output bit as a function of n bits.

it By
! : -
2-1 2-1 [~
L —1—
—{ U — v [
. x~ —
SELECT SELECT
XNOR AND Si
Yi N
1 ority —
—d Decislon S
Block]

S' |

Figure 1: A 1-bit slice implementation of the Kar-Pradhan
rank ordering algorithm (for m=5).

A 1-bit slice of the algorithm’s proposed implementation
is shown in Figure 1, as a pipeline block for filtering 5
words of arbitrary bit-length. First, the Majority Deci-
sion block finds the filter-slice output “y;” from aj;. In the

1-436

MUX

2.
jirl N
Ajir]

S; — Sin

Figure 2: Gate-level schematic of the modifier/selector
block

Modifier/Selector block (Fig.2) an XNOR operation is per-
formed on the output bit “y;” and the corresponding bit
“aj;”, in order to determine whether or not the two bits are
identical. The result of this XNOR operation is then com-
bined (AND operation) with the select signal originating
from the previous block. This provides the information if
the data bit taken from the previous block is a propagat-
ing one or not. If the data bit is a propagating one, then
the new select signal will be 0, indicating that this data bit
will continue propagating unchanged through the following
stages. Otherwise, the select signal will only depend on the
result of the comparison of the filter-slice output with the
current data bit. Identical 1-bit filter slices can be used in
sequence (cascade configuration) in order to process input
vectors of arbitrary bit-length.

3 Implementation of the
Programmable ROF Architecture

3.1 Bit-Level Pipeline Structure

As mentioned earlier, the Kar-Pradhan rank-order algo-
rithm reduces the rank ordering problem to determining
“n” rank order selections for 1-bit numbers. This bit-serial
approach makes it possible to increase the throughput by
using a bit-level pipeline architecture. Thus, for a pipelined
filter with 8-bit word length, the throughput would increase
by a factor of eight compared to the unpipelined version.

3.2 Realization of the Majority Decision
Block

The design of the modifier/selector block shown in Fig.2
is straight-forward using conventional CMOS logic gates,

whereas the majority decision block presents a bottleneck
with conventional methods. Since the majority decision
is in fact a threshold function, it can be most efficiently
implemented with threshold logic. Therefore, capacitive
threshold logic gates offer a more efficient realization of the
majority function compared to conventional logic gates [5].
For the realization of the rank ordering algorithm, the ca-
pability of using a programmable majority decision gate is
highly desirable. The CTL based realization of the major-
ity function also offers that capability at almost no addi-
tional cost. As presented in [5], a 31-input programmable
majority gate based on CTL is almost three times faster
than a full custom standard CMOS realization [7] and oc-
cupies approximately one third of the area which results
in a area-delay performance increase of nearly an order of
magnitude. In addition, the CTL-based majority gate can
be easily integrated with the conventional CMOS gates used
in the architecture, since the input and output signals are
fully CMOS compatible. The compacted layout of the 31
input programmable majority gate is shown in Figure 3.
The dimensions of this majority block are 195um x 75um.

Figure 3: Layout of the majority gate based on CTL.

3.3 Overall System Architecture

The programmable Rank-Order-Filter algorithm described
above can be implemented using modifier/selector blocks
based on standard CMOS, and majority function blocks
based on threshold logic.

The proposed architecture has the following specifications:

e 8-bit word length, 31 word maximum window size.
¢ Programmable rank and window size.

e 8-stage pipelined architecture to increase throughput.

1-437

The specifications essentially describe a high-speed, multi-
purpose rank-order filter. The most important character-
istic of the filter is programmability of both rank and win-
dow size which are not easily realizable with conventional
approaches.

shift registers

CTL block 1

1 bit slice
processor block
no. 1

CTL block 2

1 bit slice
processor block
no. 2

CTL block 3

1 bit slice
processor block
no. 2

[—.

CTL block 8

Figure 4: Datapath floorplan of the 8-bit programmable
ROF.

A simple program control block is responsible for evaluating
the input control words for window size and rank program-
ming. Depending on the result of the evaluation phase, this
block either programs the CTL gates or in case of an error,
sets the error flag retaining the current settings of the CTL
gates. The window size control logic consists only of a 5
input NOR gate because the only invalid word is 00000, a
null window. A single word window is also considered a
valid input which makes the ROF equivalent to a digital
all-pass filter. The threshold control logic will look for in-
valid control words like a rank of 0 and ranks that are less
than the current window size.

The floorplan of the 8-bit programmable ROF which actu-
ally reflects the dataflow can be seen in Figure 4.

4 Conclusion

In this paper, we have presented a new architecture for
realizing a fully programmable ROF, based on the Kar-
Pradhan rank ordering algorithm and Capacitive Threshold
Logic (CTL) majority gates. The bit-serial realization of
the rank ordering algorithm offers a simple pipelined filter
architecture which is highly modular and easily expand-
able. The CTL realization of the majority gates used in
the ROF architecture allows the filter rank and the window
size to be user-programmable, resulting in a much smaller
silicon area. In addition, the CTL based majority gates
enable a much simpler overall filter architecture compared
to conventional digital median filter realizations.

References

[1] D.S. Richards, “VLSI median filters”, IEEE Trans.
Acoust., Speech, Signal Processing, vol. 38, pp.145-152,
January, 1990.

[2] J.P. Fitch, E.L. Coyle and N.C. Callagher, “Median fil-
tering by threshold decomposition”, IEEE Trans. Acous.
Speech, Signal Proc., vol 32, pp.1183-1188, 1984.

[3] A. Gasteratos, I. Andreadis, Ph. Tsalides, “Realization
of rank order filters based on majority gate”, Pattern
Recognition, vol.30, no. 9, pp 1571-1576, 1997.

[4] C.L. Lee and C.W. Jen, “Bit-sliced median filter design
based on majority gate”, in Proc. Ins. Elec. Eng.-G, vol
139, pp.63-71, 1992.

[5] Y. Leblebici, F.K. Gurkaynak, D. Mlynek, “A compact
31-input programmable majority gate based on capaci-
tive threshold logic”, in Proc. IEEE Int. ASIC Confer-
ence 1998, pp. 281-285.

[6] B.K. Kar, D.K. Pradhan, “A new algorithm for order
statistic and sorting”, IEEE Trans. on Signal Process-
ing, vol. 41, pp.2688-2694, August 1993.

[7] E.E. Swartzlander, Jr., “Parallel counters”, IEEE Trans.
Comput., vol.34, pp. 1021-1024, Nov. 1973.

I-438

