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ABSTRACT

An adaptive algorithm is proposed for time delay esti-
mation between sinusoidal signals received at two spa-
tially separated sensors. The idea is to model the dif-
ferential delay by an FIR filter whose coefficients are
samples of a sine function. The delay estimate is up-
dated directly on a sample-by-sample basis using the
least mean square method and its con vergence behavior
and mean square delay error are analyzed. The delay
estimation performance of the algorithm can be further
improved when the signal and noise powers are avail-
able. Computer simulations are presented to validate
the theoretical derivations of the proposed estimator
for static and linearly varying delays.

I. Introduction

The problem of estimating the propagation delay be-
tween two noisy versions of the same signal received at
spatially separated sensors has attracted much atten-
tion in the literature [1]. It is widely used in passive
sonar where the bearing of a moving target can be de-
termined from the time delay measurements by trian-
gulation [2]. Other applications include determination
of the center of earthquakes, navigation, speed sensing
[3] and speech enhancement [4].

In discrete-time form, the t wo sensor outputs can be
expressed as

ri(k) = s(k) + ni(k)
(1)
Tg(k) = S(k — D) + ng(k)

where s(k) is the signal of interest, ny(k) and na(k) are
uncorrelated zero-mean noises which are statistically in-
dependent of s(k) and D is the differential delay to be
determined. For simplicity but without loss of general-
ity, it is assumed that the sampling period is 1 second.

When the time difference of arriv al is nonstationary
due to either relative source/receiver motion or time-
varying characteristics of the transmission medium,
adaptive tracking of D is necessary. However, most of
the existing adaptive delay estimators [5]-[10] assume
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that s(k) is a stochastic process and thus it is not ap-
propriate for use in situations where the source signal
is deterministic.

The aim of this paper is to devise an adaptive delay
estimation algorithm for a mo ving source that emits
a constant tone in radar and certain types of under-
water acoustic systems [11]-[12]. The source signal is
expressed as s(k) = Acos(wok + ¢) where A and ¢ rep-
resent the unknown tone amplitude and phase, respec-
tively, and wp € (0, ) is the known radian frequency.
Section II derives the FIR filter that can generate the
time shifted version of a pure sinusoid and its delay
modeling error is investigated. An adaptive delay esti-
mator for sinusoid (ADES) is then developed in Section
III. In particular, learning behavior and mean square
delay error of the algorithm for both static and linearly
varying delays are analyzed. In Section IV, the ADES is
improved to provide unbiased delay estimates for allwg,
assuming that the signal and noise powers are known.
Simulation results are presented in Section V to corrob-
orate the theoretical analyses and to evaluate the delay
estimation performance of the proposed approach. Fi-
nally, conclusions are drawn in Section VI.

II. Modeling of Dela y for Sinusoid

Using inverse discrete-time Fourier transform and not-
ing that s(k) is a pure sinusoid, the FIR filter coeffi-
cients {h;} that can time shift s(k) by a delay D are
derived as

n

W= g / e=390=D) (8w + wo) + 8w — wo))dew
-
= cos(wo(l — D)), I=-,=1,0,1,--- (2

where 6(-) is the Dirac delta function. From the convo-
lution theorem and with proper scaling of h;, s(k — D)
can thus be expressed as

L-1
s(k — D)= lim % > sk —1)cos(wo(l = D)) (3)

Lo
=0

Let 57 (k — D) be the finite filter length representation
of (3). Making use of trigonometric iden tities, the delay
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modeling error, ¢(D), is given by

>
Cn)

(D) (k- D) —s(k—D)

| o

L—-1
= 7 Z cos(wo(2l —k—D)+¢) (4)
=0

It can be observed that (D) = 0 when wol is an in-
tegral multiple of 7 and its magnitude decreases as L
increases.

III. Adaptive Delay Estimator for Sinusoid

Based on (3), the ADES is devised to compensate the
time difference between r1(k) and r2(k) and its system
block diagram is depicted in Figure 1. The filter coeffi-
cients given by {2/L cos(wo(l — D(k))}, 0 <1< L -1,
are expressed as a function of the delay estimate, ﬁ(k),
only. In the ADES, the output error function e(k) is
computed from

L—]

e(k) = ra(k Z

k —1) cos(wo(l — D(k))) (5)

By differentiating ¢?(k) with respect to b(k), stochas-
tic gradient estimate which is similar to that in the
Widro w’s least mean square (LMS) algorithm [13] is
obtained. The estimated delay is adapted iteratively
to minimize the mean square output error, E{e?(k)},
according to the following equation

Dlk+1) = D(k)—ygeb—gkk;
_ 7 2;t Iil
-sinfwo(l — D(k))) (6)

where p is a positive scalar that controls convergence
rate and ensures system stability of the algorithm. To
reduce computation, values of the sine and cosine func-
tions are retrieved from a pre-stored sine vector. For’
each sampling interval, the algorithm requires (2L + 4)
multiplications, 2L additions and 2L look-up opera-
tions.

Considering that woL/7 is an integer and taking the
expected value of (6), we obtain

E{D(k + 1)} A

= E{D(k)} + uo? B{sin(wo(D — D(K)))
BB + peluolD = E(D(R)

+(

1 = pojwo)**H(D(0) - D) (")

Q

where o2 and D(0) represent the signal power and
the initial delay estimate, respectively. Provided that
2/(02wo) > p > 0, D(k) will converge to D in the mean
sense with a time constant of 1/(po?wp).

Assuming that ni(k) and na(k) are white Gaussian
processes with variance 3 and using (6), the delay vari-
ance of the ADES algorithm, denoted by var(D), can
be shown to be

var(D)

limi E{(D(k) — D)?}

k—co

po?(L2SNR + L + 2)
woL2SNR?

(8)

where SNR = 02/02. It can be seen that var(D) is
proportional and inversely proportional to u and wy,
respectively, and its value decreases with increasing L
for small SNR. Moreo ver, the delay variance has zero
value in the absence of noise.

For nonstationary delays, we can still use (6) and
(7) to obtain the mean delay estimates, although closed
form expressions are generally not available. In partic-
ular, when the time delay is linearly varying, that is,
D(k) = Do + Mk, where Dg and A represent the delay
at k = 0 and Doppler time compression, respectively,
the mean value of (6) can be approximated as

E{D(k + 1)}

~  E{D(k)} + pojwo(D(k) — E{D(K)}) (9)

Solving (9) yields the tracking behavior for a linearly
varying delay which is expressed as
E{D(k)} =

D(k) - + (1 = potwo)

p1o2wo

(D(0) ~

) (0
The second term of the right hand side represents the
steady state time lag which is directly proportional to
X and inversely proportional to g, 02 and wq while the
last term is a transient factor that converges to zero as
k goes to infinity. In this case, the mean square delay
error, mse(D), is equal to the delay variance in (8) plus
the square of time lag [14] and has the form

. po?(L2SNR + L + 2 A2
mse(D) = ( 2 3 ) 2.4 2
woL2SNR plotwg

Since the first term increases with g but the second
term decreases with u?, u must be selected appropri-
ately in order to achieve the best performance. As a
rule of thumb, when noise dominates, a smaller v alue of
u should be used. Otherwise, a larger value of u is pre-
ferred particularly when the delay is changing rapidly
with time.

(11)
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IV. An Impro ved ADES

‘When woL is of any real value, the mean value of (6) is
given by

E{D(k + 1)} — E{D(k)}
= ;tafE{Sin(Wo (D - f)(k))}

L-1
~2(Lo? + o2)E{_ sin(2wo(l — D(k)))}/L?
=0

L-1 .

+pol E{) sin(wo(2l — D(k) — D))}/L  (12)

=0

If woL/m is an integer, (12) becomes (7). Otherwise,
D(k) is a biased estimate of D, although its delay error
decreases with increasing L. If the signal and noise
powers are known, we make use of (12) to remow the
delay bias by modifying the ADES algorithm to

D(k+1)

Notice that the convergence behavior and mean square
delay error analyses of the improved algorithm are iden-
tical to those of (6).

V. Sim ulation Results

Extensive computer sim ulations had been conducted to
evaluate the delay estimation performance of the pro-
posed approach for sinusoidal signals in the presence
of white Gaussian noise. The amplitude and phase
of the sinusoid were /2 and 1.0, respectively, while
SNR = 10dB. The filter length L was chosen to be 16
and the initial delay estimate was set to 0. The results
provided were averages of 200 independent runs.

Figure 2 shows the trajectory for the delay estimate
of the ADES when D was a static delay with a value
of 4.5s. The sinusoidal frequency was assigned to be
0.1257rad/s which made woL/7 an integer while ;2 was
selected to 0.005. It is seen that D(k) converged to
the desired value at approximately the 2500th itera-
tion. The initial convergence rate was slightly slower
than the theoretical calculation because the delay esti-
mate was not close to D at the beginning of adaptation.
Moreo ver, the measured variance of D(k) was found to
be 1.282 x 1073s?, which conformed very well to the
theoretical value as given by (8).

Figures 3 illustrates the tracking performance of the
ADES when the actual delay was a linearly time-
varying function of the form D(k) = 0.0005k at wy =
0.125nrad/s. The step size p was increased to 0.05 for
a faster convergence speed. W e observe that the algo-
rithm tracked the delay satisfactorily with a time lag of
approximately 2.343 x 10~ %s and this value agreed with
(10). Furthermore, the measured mean square dela y er-
ror had a value of 1.288 x 10~2s? which was quite close
to that derived from (11).

The first test was repeated for a non-integer wolL/m,
namely,wo = 0.1367rad/s and the learning characteris-
tics of the ADES and the improved ADES are shown in
Figure 4. It can be seen that both methods converged
at approximately the 2000th iteration. However, the
ADES gave a biased delay estimate of 4.414s while the
estimate of D in the improved ADES was very accurate
provided that o2 and o2 were available. The measured
delay variance of the improved ADES was 1.267 x 10~3s?
which also conformed to (8).

V1. Conclusions

The ADES has been proposed for estimating and track-
ing the time difference of arrival of a sinusoid received
at two separated sensors. It uses an adaptive FIR filter
whose coeflicients are sample of a sine function to model
the delay. Using an LMS-st yle algorithm, the delay esti-
mate is adjusted explicitly on a sample-b y-sample basis.
Learning behavior and mean square delay error of the
ADES for both static and linearly varying delays are
derived. When the signal and noise po wers are known,
the ADES algorithm can be modified to provide unbi-
ased delay estimation for all finite L and wo. Numerical
examples are included to validate the theoretical analy-
sis and to demonstrate the effectiveness of the proposed
approach.

References

[1] G.C.Carter, Coherence and Time Delay Estimation:
An Applied Tutorial for Research, Development, Test,
and Evaluation Engineers, IEEE Press, 1993

[2] C.G.Carter, "Time delay estimation for passive
sonar signal processing,” IEEE Trans. Acoust., Speech,
Signal Processing, vol.29, no.3, pp.463-470, June 1981
[3] P.Bolon and J.L.Lacoume, ”Speed measurment by
cross correlation - theoretical aspects and applications
in paper industry,” IEEE Trans. Acoust., Speech, Sig-
nal Processing, vol.31, no.12, pp.1374-1378, Dec. 1983
[4] K.U.Simmer, P .Kuczynski and AW asiljeff, ”Time:
delay compensation for adaptive multichannel speech
enhancement system,” Proceedings of 1992 URSI In-
ternational Symposium on Signals, Systems and Elec-
tronics, pp.660-663, Sep. 1992

IvV-503



[6] P.L.Feintuch, N.J.Bershad and F.A.Reed, ” Time de-
lay estimation using the LMS adaptiv e filter - dynamic
behavior,” IEEE Trans. Acoust., Speech, Signal Pro-
cessing, vol.29, no.3, pp.571-576, June 1981

[6] Y.T.Chan, J.M.F.Riley and J.B.Plant, “Modeling of
time-delay and its application to estimation of nonsta-
tionary delays,” IEEE Trans. Acoust., Speech, Signal
Processing, vol.29, no.3, pp.577-581, June 1981

[7] H.Meyr, G.Spies and J.Bohmann, ”Real-time esti-
mation of moving time delay” Proceedings of the In-
ternational Conference on Acoustics, Speech, and Sig-
nal Processing, vol.1, pp.383-386, May 1982

[8] H.H.Chiang and C.L.Nikias, ”A new method for
adaptive time delay estimation for non-Gaussian sig-
nals,” IEEE Trans. Acoust., Speech, Signal Processing,
vol.38, no.2, pp.209-219, Feb. 1990

[9] H.C.So, P.C.Ching and Y.T.Chan, ” A new algorithm
for explicit adaptation of time delay,” IEEE Trans. Sig-
nal Processing, vol.42, no.7, pp.1816-1820, July 1994
[10] P.Handel, ”Frequency selective adaptive time de-
lay estimation,” IEEE Trans. Signal Processing, vol .47,
no.2, pp.532-535, Feb. 1999

[11} A.J. W eiss, "Bounds on time-delay estimation for
monochromatic signals,” IEEE Trans. Aerospace and
Elect. Sys., vol.23, no.6, pp.798-808, Nov. 1987

[12] S.M.Kay, Fundamental of Statistical Signal Pro-
cessing: Estimation Theory, Englewood Cliffs, NJ:
Prentice-Hall, 1993

[13] B.Widro w and S.D.Stearns, Adaptive Signal Pro-
cessing, Englewood Cliffs, NJ: Prentice-Hall, 1985

[14] V.H.MacDonald and P.M.Schultheiss, ”Optimum
passive bearing estimation in a spatially incoherent
noise environment,” J. Acoust. Soc. Am., vol.46, pp.37-

43, 1969

H(z)= %:;:cos(mu(l-ﬁ))z"

r,(k)=s(k)+n,(k)

e(k)

r,(k)=s(k-D)+n,(k)

O

Figure 1: System block diagram for adaptive time
delay estimation
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Figure 2: Delay estimate of ADES for static delay at
wo = 0.1257rad /s
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Figure 3: Delay estimate of ADES for linearly varying
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Figure 4: Delay estimates for static delay at
wo = 0.1367rad/s
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