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ABSTRACT 
In this paper, a new robust adaptive lattice-ladder filter for 
impulsive noise suppression is proposed. The filter is obtained by 
applying the non-linear filtering technique in [l]  and the robust 
statistic approach to the gradient adaptive lattice filter. A 
systematic method is also developed to determine the 
corresponding threshold parameters for impulse suppression. 
Simulation results showed that the performance of the proposed 
algorithm is better than the conventional RLS, N-RLS, the gradient 
adaptive lattice normalised-LMS (GAL-NLMS), RMN and ATNA 
algorithms when the input and desired signals are corrupted by 
individual and consecutive impulses. The initial convergence, 
steady-state error, computational complexity and tracking 
capability of the proposed algorithm are also comparable to the 
conventional GAL-NLMS algorithm. 

1. INTRODUCTION 
Recently, there has been considerable interest in studying adaptive 
filtering algorithms that are robust to impulsive interference. 
Under such adverse condition, the performance of the 
conventional linear adaptive filters can deteriorate significantly. 
Nonlinear techniques are often employed to reduce the hostile 
effects of the impulsive noise. In the nonlinear LMS (ATNA) and 
nonlinear RLS (N-RLS) algorithms [2 ,  31, nonlinear clipping 
functions are used to limit the transient fluctuation of the 
estimation error in conventional adaptive filters caused by the 
impulses. The mixed-norm LMS (RMN) algorithm, proposed in 
[4], combats the impulsive noise in the desired signal by 
minimising a combination of L1 and & norms using the 
stochastic gradient method. All of these methods are not robust to 
impulses that appear at the input signal. In [ 5 ] ,  a RLS-liked 
algorithm, called the M-estimate recursive least (M-RLS) 
algorithm, was proposed for impulsive noise suppression, by 
minimising an M-estimate cost function instead of the 
conventional mean square error. The M-RLS algorithm is more 
robust to the conventional RLS, N-RLS, RMN and ATNA 
algorithms when the input and desired signals are corrupted by 
individual and consecutive impulses. It is also more suitable to 
real-time processing than the Huber adaptive filter 161, which 
treats the filtering problem as a block fitting problem using the 
general M-estimator (GM-estimator) ( [ 7 ] ,  pp.12). The Huber 
adaptive filter is not recursive and a system of nonlinear equation 
has to be solved in each iteration. The arithmetic complexity of the 
M-RLS algorithm, however, is still rather high ( O ( N z )  ) compared 
with the LMS and gradient lattice algorithms ( O ( N ) ) .  In this 
paper, a robust lattice-ladder adaptive filter with O ( N )  
complexity, called the RGAL-RNLMS algorithm, is proposed. The 
M-estimate distortion measure in [5]  is used to combat the 
impulses in the estimation error while the non-linear filtering 
technique in [ I ]  is used to remove the impulses in the input signal. 
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2. OVERVIEW OF THE GRADIENT 
ADAPTIVE LATTICE ALGORITHM 

Without loss of generality, the gradient adaptive lattice (GAL) 
filter is configured as an adaptive channel equalizer as shown in 
Fig.1. The signals x(n)  , i ( n )  and d ( n )  are the input, output and 
desired signals of the lattice-ladder filter, respectively. The GAL 
filter consists of an optimal minimum mean squares (MMSE) 
lattice predictor of order M to whiten the input signal x(n)  and a 
linear estimator of d(n) from the prediction errors, b,,,(n) . In the 
m-th stage of the lattice predictor, the forward and backward 
prediction errors, f, (n) and b,,,(n) , are computed as follows 

f,(n) = f,_,(.) - k i (n )b ,n - , (n -  1) > 

f o ( n ) = b o ( n ) = x ( n ) , P o b ( n - 1 ) = x 2 ( n ) ,  (1) 

b , , (n )=  b , " - , ( n - I ) - ~ i ( n ) ~ " ~ , ( n ) ,  1 5 m S M .  

where k i ( n )  and k i ( n )  are the forward and backward reflection 
coefficients, respectively. When x ( n )  is a stationary process, the 
forward and backward reflection coefficients are equal, i.e., 
k,f(n)  = k i ( n )  = k , n ( n ) .  Minimising the cost function 

J, = E[(f,(n)12 + 1b,,,(n)12] [8] with respect to k, , (n)  and using 
the LMS concept, the reflection coefficients in the gradient 
adaptive lattice (GAL) algorithm can be updated as 

k ( n +  1) = k,(n)+ P k , m ( ~ ) L f m ( n ) b m - l ( n  - I )+  b m ( n ) f m - l ( n ) l ( 2 )  

where pk,,(n) is the normalised step-size given by 

pk,,, is a constant stepsize, p is the forgetting factor, P,"_,(n) is 

the signal power of the input at the m - t h  stage of the predictor, 
and E is a small positive constant to prevent the instability of the 
algorithms when P,"-,(n) is close to zero. The desired signal is 
estimated as 

where w,,~  (n) is the ladder gain or regression coefficient [9].  The 
lattice predictor serves as an adaptive orthogonal transform to 
decorrelate the input signal x(n)  . The LMS algorithm can be used 
to update the weights w,,,(n) as follows 

wm(n + 1) = w,(n) + 2 ~ , , , ~ ( n ) e ( n ) b , , , ( n )  , e(n)  = d ( n )  - d(n) 4 5 )  
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where m = 0,. . . ,M , p,,,,,(n) is the normalised stepsize 
parameter, which can be calculated by (3) with different stepsize 
constant, pw,o , Equations (1-5) constitute the gradient adaptive 
lattice normalised-LMS (GAL-NLMS) algorithm [8]. 

3. ROBUST ADAPTIVE LATTICE-LADDER 
FILTERING ALGORITHM 

From (1) and (2), we can see that only one impulse appearing in 
the x(n)  will greatly fluctuate the b,,,(n) , f,,,(n) and k,,,(n) at 
each lattice stage due to the order recursion property. An effective 
method is to suppress the impulses before they enter the lattice 
filter. In our work, the approach in [I] is adopted to filter the 
impulses in the input signal (section 3.3). Basically, the input 
signal is predicted from its past samples using a linear predictor. If 
the prediction error is greater than a given threshold, an impulse is 
said to be detected and the input sample will be replaced by its 
estimated value. The adverse effect of the impulses is therefore 
reduced. Furthermore, if d(n )  is corrupted by impulsive noise, it 
can be seen from (5) that e (n)  and w,,,(n) will fluctuate 
significantly, which requires many iterations to recover. In Section 
3.1, we shall extend the robust statistic approach in [SI to stabilise 
the weight vector w,,,(n) in the GAL algorithm. 

3.1. Robust Normalised LMS (RNLMS) 
Algorithm 

Following the same concept in [5], the following M-estimate 
based cost function is used instead of the mean squares error: 

where, p ( , )  is a robust M-estimate. Without loss of generality, we 
shall consider the Hampel's three parts redescending M-estimate 
function ([IO], pp. 150) in this paper, which is defined as 

The advantage of this M-estimate is that its first order derivative is 
continuous and it is a piecewise approximation of the maximum 
likelihood estimator when the input and additive noises are 
modelled as a mixture of Gaussian processes. As shown in Fig. 2, 
p ( . )  is an even real-valued function and it is quadratic when e is 
smaller than < . For larger values of e in the interval [e, A I ] ,  the 
function is linear. For values greater than A * ,  the function is 
equal to a constant. It becomes apparent that the M-estimator is 
capable of suppressing outliers with large amplitude. The 
threshold parameters 5 ,  A , ,  and A 2  are used to control the 
degree of suppression of the outliers. The smaller the values of 6 ,  
A I  , and A z  , the greater the suppression will be of the outliers. 

The threshold parameters are usually chosen according to the 
applications or estimated continuously. yM ( n )  , as defined as (6), 
is therefore capable of smoothing out momentary fluctuation 
caused by the impulsive interference. Differentiating (6) with 
respect to w , one gets the following gradient vector of T,,,, 

is the weighting function. Using the instantaneous gradient vector, 

tw = &n)k(n)- as the estimate of the gradient vector, 

V, , one gets the weight update equation of the proposed robust 
normalised LMS (RNLMS) algorithm: 

(9) 

aw 

w,n(n + 1) = w,n(n)+ 2~,:,(n)q(e(n))e(n)b,~(n) ' 

The thresholds ( , A ,  and A2 will be estimated continuously so 
that the corrupted estimation error can be detected. The values of 
q(e(n)) , as given by (S), will be set to zero. Hence the weight 
vector is unaffected by the impulses. 

3.2. Parameter estimation 

Though the distribution of the error signal e(n)  is in general 
unknown, i t  is assumed as Gaussian distributed with additive 
impulsive noise. By estimating the variance of e(n) without the 
impulses, i t  is possible to detect and reject the impulsive noise in 
e (n)  . More specifically, the probability of le(n)( greater than a 

given threshold T is given by [5] 

where e r f ( r )  = 2- [e-'*& is the error function and e e ( n )  is the 

estimated standard deviation of the estimation error. Using 
different threshold parameter T, we can detect the impulsive noise 
with different degrees of confidence. Let Qt = P,{le(n)l> 51 , 
OA, = P,{le(n)l > A I ) ,  and = P,(Ie(n)l> A 2 ]  be the 

probabilities that le@)( is greater than 5 ,  A I  and A 2 ,  

respectively. In our work, e t ,  @A, and BA2 are chosen to be 
0.05, 0.025 and 0.01, respectively, so that we have 95% 
confidence to down weight or reject the impact of the e(n)  when 
le(n)l> 4 .  Using these values for 0 5 ,  @A, , the 
threshold parameters are determined to be 

G 

and 

5 = 1.966,(n), A1 = 2.246,(n), A 2  = 2.5766,(n). (11) 

A common estimate of 6e ( n )  is 

6:(n) = A,6f(n - I) + (1 - Ae)e'(n) [3]. It is, however, not robust 
to impulses. In fact, one single large impulse can substantially 
increase the value of ke(n) ,  and hence the values of 5 ,  AI and 
A 2 .  A more robust and complex estimate is the median absolute 
deviation from the median (MAD) ([lo], pp.105). In this paper, a 
new recursive estimate for b e ( n )  is proposed: 
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where Ae(n) = ( e 2 ( n ) ; . . , e 2 ( n -  N ,  + I)} , N ,  is the length of the 
estimation window, and A, is the forgetting factor. Due to the 
recursive nature of the estimation, the estimation window is of 
infinite length, giving rise to a more stable estimation against 
impulsive noise. The traclung ability of this estimation is also very 
good, as will be shown in the simulation section. 

3.3. Robust Gradient Adaptive Lattice (RGAL) 
Algorithm 

Based on the lattice predictor, the one-step-ahead prediction of the 
input signal i ( n + I )  and the prediction error e p ( n )  can be 
written as [ l l] :  

M-1 

and e , , ( n ) = x ( n + I ) +  z k , + , ( n ) b , ( n ) .  (13) 
I =O 

TO detect the impulses in e , ( n )  , the parameter estimation 
technique described in section 3.2 is employed to estimate the 
variance of e , ( n ) ,  with different forgetting factor A,, and 

window length N ,  . Consequently, the threshold parameters and 

the variance of e p ( n ) ,  5’ (n) , can be computed by (11) and 

(12) with e(n)  , &:(n) , N ,  and A, replaced, respectively, by 
eP 

e , ( n ) ,  ai‘(,), N ,  and A, .  If e p ( n )  is greater than the 

estimated thresholds, an impulse is said to occur in the input 
signal, the input sample will be replaced by a corresponding 
weighted combination of the input sample and its predicted value 
as follows 

x(n + 1) = q(ep(n))4n + 1) + (1 - 9(ep cn,)2i.cn + 1) . (14) 

where q(.) is the weighting function defined in (S), and ;(n+l) 
is the predicted value of x ( n  + 1) in (13). The differences between 
our approach and that in [l] are: i) the different weighting 
function is used. ii) The suppressing or filtering of the impulses in 
x(n)  is derived from the lattice-ladder filtering process. Therefore 
an additive pre-processor is not needed. The arithmetic complexity 
can be greatly reduced. In summary, the proposed adaptive 
algoritl m, called robust gradient lattice and robust step- 
norm:iiised LMS (RGAL-RNLMS) algorithm consists of equations 
(1-4, , and 11-14). Compared to the conventional GAL-NLMS 
algorithm, the increase of the arithmetic complexity is mainly due 
to the M more multiplications in (13), and the median operations 
in (12), which require O( N, log N,)  and O ( N p  log N ,  1 
operations, respectively. 

4. SIMULATION RESULTS 
In this section, the performances of the proposed RGAL-RNLMS 
algorithm, the conventional RLS [9], GAL-NLMS [8], N-RLS [3], 
RMN [4], and ATNA [2 ]  algorithm in impulsive noise 
environments will be evaluated, using the channel equalization 
problem shown in Fig.1. s(n) is a random binary sequence with 

zero mean and variance one. c; =[.2194,1,.2194] is the impulse 
response of the communication channel [9] with eigenvalue 
spread 6.0782. To evaluate the tracking performance of the 
algorithms, the coefficients of the channel are suddenly changed to 

ci  = [.35,1,.35] [8] at n = 1024. The mean square error (MSE)  is 
used as the performance measure. v,(n) and vi(n) are 

respectively the additive Gaussian and impulsive noises. v i  (n) is 
generated by the Gaussian-Bernoulli process [ 1 ,  41 with an arrival 
probability of Po, s 5*10-3 and variance ratio y 2  = 100. In the 
simulation, the impulses in the desired signal occur at 
n = 302,609,610,1301,1511-1515,1807. On the other hand, the 
channel output signal is assumed to be corrupted by v, (n) and 

the impulses appearing at n = 301,302,1309- 1314,1807 . The 
positions of the impulses are fixed in all independent runs but 
their amplitudes are governed by zero mean Gaussian process. The 
signal to noise ratio, SNR = 2O10g1,(~~,2/c7~) , at the equaliser 

input is 30 dB, where D: is the variance of the channel output 
signal. The parameters for all algorithms are summarised in Table 
I .  The MSE results in the presence of the impulses in the desired 
and the input signal are plotted in Fig.3 and 4, respectively. From 
Fig.3 (a) and Fig. 4 (a), it can be seen that the performance of the 
GAL-NLMS (line 2 with hexagrams) and RLS (line 3 with plus 
sign) algorithms is significantly affected by the impulses, 
especially for those impulses in the input signal. The initial 
convergence speed, tracking ability and steady error are identical 
for the GAL-NLMS and the RGALR-NLMS (line 1 with stars) 
algorithms. From Fig.3 (b) and Fig. 4 (b), the following are 
observed: i) The RGAL-RNLMS algorithm is more robust to 
impulses and has the best tracking performance than all the other 
algorithms considered. Its initial convergence and steady error are 
inferior to that of the N-RLS algorithm, because of the sub-optimal 
nature of the gradient lattice algorithm. ii) The RMN (line 3 with 
squares) algorithm is not robust to the impulses in the input signal. 
iii) The performance of the N-RLS (line 2 with circles) and ATNA 
(line 4 with diamonds) algorithms is significantly degraded in the 
presence of the consecutive impulses in the desired signal or 
impulses in the input signal. 

5. CONCLUSION 
In this paper, a new adaptive lattice-ladder filter for impulsive 
noise suppression is presented. The filter is obtained by applying 
the non-linear filtering technique in [l] and the robust statistic 
approach to the gradient adaptive lattice filter. A systematic 
procedure is also developed to determine the corresponding 
threshold parameters for impulse suppression. Simulation results 
showed that the performance of the proposed algorithm is better 
than the conventional RLS, N-RLS, GAL-NLMS, RMN and ATNA 
algorithms when the input and desired signals are corrupted by 
individual and consecutive impulses. The initial convergence, 
steady-state error, computational complexity and tracking 
capability of the RGAL-RNLMS algorithm are also comparable to 
the conventional GAL-NLMS algorithm. 
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Fig. 1 Adaptive Channel Equalization Scheme 
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Fig.2 Three parts redescending M-estimate function 

I 

Fig. 3 The performance comparisons in the presence of the 
individual and consecutive impulses in the desired signal 

Fig. 4 The performance comparisons jn the presence of the 
individual and consecutive impulses in the input signal 

Table 1. The parameters for computer simulations 
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