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ABSTRACT 
In this paper, a new family of multiplier-less modulated 
filter banks, called the SOPOT MFB, is presented. The 
coefficients of the proposed filter banks consist of sum 
of powers-of-two coefficients (SOPOT), which require 
only simple shifts and additions for implementation. The 
modulation matrix and the prototype filter are derived 
from a fast DCT-IV algorithm of Wang [lo] and the 
lattice structure in [l]. The design of the SOPOT MFB 
is performed using the genetic algorithm(GA). ,An 16- 
channel SOPOT MFB with 34 dB stopband attenuation is 
given as an example, and its average number of terms per 
SOPOT coefficient is only 2.6. 

I. INTRODUCTION 
Perfect Reconstruction (PR) critically decimated filter 
banks have important applications in speech, audio and 
image processing. Fig. l(a) shows the block diagram of 
a critically decimated uniform M-channel filter banks. 
The theory and design of M-channel PR maximally 
decimated uniform filter bank has been extensively 
studied [l]. The cosine modulated filter banks (CMFB) 
[2] and the lapped transforms [3], [4], [5] are two 
efficient classes of filter banks with low implementation 
complexity and good performance. Recently, there is 
increasing interest in designing filter banks with low 
implementation complexity. Approaches based on the 
sum of power-of-two (SOPOT) coefficients [6,9] or 
integer coefficients [7] have been proposed. With the use 
of SOPOT, coefficient multiplications can be 
implemented with simple shifts and additions. In [7], a 
subspace approach was proposed to design the prototype 
filter of the CMFB with integer coefficients. Since 
integer coefficient filter banks require only integer 
arithmetic (additions and possibly multiplications), the 
implementation of the filter banks is greatly simplified. 
Also, if sufficient word length is used to represent the 
intermediate data, the round-off error can completely be 
eliminated. 
In this paper, a new family of modulated filter bank with- 
sum of powers-of-two coefficients, called SOPOT-MFB, 
is developed. The SOPOT-MFE3 is based on our 
previous work in [SI, where it was shown that modulated 
filter banks with perfect reconstruction can be obtained 
by using modulations other than the conventional cosine 
modulation. Unfortunately, satisfactory design of the 
modulations have not been obtained. In this work, the 
SOPOT modulation matrix and prototype filter are 
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derived from a fast DCT-IV algorithm of Wang [lo] and 
the lattice structure in [l]. The design of the SOPOT 
MFB is performed using the genetic algorithm. An 16- 
channel SOPOT MFB with 34 dB stopband attenuation is 
given as an example, and its average number of terms per 
SOPOT coefficient is 2.6. 

The rest of the paper is orgainized as follows : 
Section I1 is a brief overview of the theory of modulated 
filter banks. The construction of the SOPOT modulation 
matrix and the design of the SOPOT MFB will be 
described in Section I11 and IV, respectively. A design 
example is shown in Section V. A summary of the 
results is given in Section VI, the conclusion. 

11. THEORY OF MFB 
In CMFB, the analysis filters f, (n) and synthesis filters 
g ,  (n) are derived from a prototype filter h(n) by cosine 
modulation c,,,, ( F,,,, ): 

f, (n> = h(n)c, ,I g ,  (n )  = h(nF,,,# 
(1) 

where M is the number of channels and N=2mM is the 
length of the filter. Two different modulations can be 
used and without loss of generality, here we will consider 
the modulation proposed in [2] : 

k = 0,1, ... M -1  ; n = 0,1, ..., N -1, 

N-1  

2.4-1 

Let H ( z )  = ZP H y ( ~ 2 M  ) be the type-I polyphase 

decomposition of the prototype filter and F,(z) the z- 
transform of f, (n)  . It can be shown that 

q = O  

2M-I 

F,(z) = CC,,,Z-'H,(-Z~~). (3) 
9'0 

The analysis filter bank can be expressed in matrix form 
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E(z) is the polyphase matrix and CA is a (M x 2 M )  

modulation matrix given by kAl.. = ck," . C A  can be 

further partitioned as CA = ( - U 9  [A, A , ]  ( q = d 2  for 
m even and q=(m-1)/2 for m odd) [2 ] :  

( 5 4  

A, = (-1)"-'JMC: ( I ,  -(-l)m-i J , )  , (5b) 

where C s  ( k , n )  = "((k t 1/2)(n t 1/2)n/2M) is the 
type-IV DCT. It can be shown that the system is PR if 
the prototype filter satisfies 

It has been shown in [ 8 ]  that the PR condition of the 
modulated filter bank is still given by (6) if 

A, = &C: ( I ,  + (-l)m-' J ,  ) , 

H k  ( z ) H , M - k - l  ( Z )  + H M + k  (Z)ff~-k-l ( Z )  =CZ-" . (6) 

(7) 

where I ,  and J ,  are ( M x M )  identity and exchange 
matrices, respectively. The result in [8] was originally 
derived for orthogonal MFB but it is still valid for the the 
more general biorthogonal PR condition (6). The general 
solutions for A, and A, are (up to a scaling) 

for some unitary matrix U ,  . If the modulation is not 
orthogonal, (6) will still be valid if the analysis 
modulation matrix d ,  and synthesis modulation matrix 

satisfy Cs satisfy 

(9) 

where C, is the modulation matrix of the type-I 
polyphase decomposition of the synthesis filters: 

It can be shown that C A  and C, are given by (up to a 
scaling) 

CA = &U, [ I ,  * JM ?*(I, T J ,  ) I  7 (loa) 

C ,  = J M ( U i ' ) T I I M  *JM,*(IM TJM)IJ,,  7 (lob) 
where U ,  is now an arbitrary nonsingular matrix. 
Without loss of generality, we will consider the case 
where 

CA = & G U M  [ I ,  + JM , ( I ,  - J M  >I 7 

c, = &(uii)TIIM + JM - J M  IIJzM . 

111. SOPOT MODULATION 
To derive the SOPOT modulation, the simplest way 

is to quantize the coefficients in the type-IV DCT. The 
inverse of the quantized matrix, however, cannot in 
general be expressed in terms of SOPOT coefficients. 

R,  = m e  sine ] 
sine -cose 

(1 1:I 

If cos0 and sine are expressed directly in terms of 
SOPOT coefficients, say a and p . The inverse of 

are SOPOT coefficients, the term (a2 t p*)-' cannot in 
general be expressed as a SOPOT coefficient. The basic 
idea of the proposed multiplier-less modulation is based 
on the following factorization of Ro and its inverse 

Since the factorizations of R, and RBI involve the same 
set of coefficients, i.e. tan(8/2) and s i n e ,  they can be 
directly quantized to SOPOT coefficients. To get the 
SOPOT modulation, we start with the fast algorithm of 
Wang [lo], which factorizes the DCT-IV into a product 
of 2 ! +1 sparse matrices as follows: 

C c  = QMVM ( e )  nKM ( e  - i)V, (P - i) H ,  , ! =log, M , 

( 1 3  
[ :r: I 

where 
- 

H M  = ' M  ('M I 2  @'M / 2 )  .diug(PM /41 141 ' M  I41 ' M  1414) 

... diug(P4,P,,...,P4,Pa), N 24, 

1 1 0  . . . . .  0 
0 . .  . . . O l  

1 0  . . . . . .  
0 . . . . . . 1  

. . . . . .  . . . . . .  

0 1 0 0  . . .  0 

F, is obtained by reversing both the rows and columris 

of P, . QM is a permutation matrix that changes the 
odd-numbered components of the vector into a reversed 
order. K ,  (i), i = 1,2 ,..., e -1, are block diagonal 
matrices given by 

K ,  (i) =(l/JZ).diug(B(i) ,B(i)  ,..., B( i ) ,B( i ) ) ,  (14) 

where B(i)  =[::I V ,  (e) is given by 

('1 = d i u g ( T l / , M  >TJ/OM 9*"7T(2M-3)/4M) 9 (15) 

. The other matrices where T, =[ 
V ,  (i) , i = 1,2, ..., - 1, are obtained by alternating the 
submatrices I , .  and E ( i )  in the main diagonal as 
follows 

I cosrn s inrn  
s i n m  -cosrn 

.V,(i) = diug(I,, , E ( i ) , I , , ; . . , E ( i ) )  (16) 

where E ( i )  = diug(TII,c+l ,Ts12r+1 ,~~~,T~2~+t-3~Iz~+l ) . - 
Let's consider the simple example: 
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Replacing T, by S, = [A -:I:, :], with 

21/64 
25/64 
29/64 
1/16 
5/16 
118 
114 

a, and 0, SOPOT coefficients, the desired SOPOT 
modulation matrix is obtained. Let R,  (i) be the matrix 
obtained by replacing T,  in V,( i )  by S , .  Because 

S,? = S, , R z ( i )  = R, (i) . The SOPOT modulation 
matrix U ,  and its inverse are given by: 

U ,  =Q,R, (O n K M @ - i ) R M ( t - i )  M (17) 

(18) 

[ :r : E. 
[:: 1 and U i l  = H E  nRM ( i ) K ,  ( i )  R, (!)Q, 

IV. DESIGN OF THE MFB 
To design the prototype filter with SOPOT 

coefficients, we use the lossless lattice structure proposed 
in [ 11 (Figure 2). The lattice coefficients are represented 
as: 

Pn 
aq,n = X U k  2" 

k = l  

a,  E [-l,l} b, E { I  ,..., l,O,-1, ..., - I )  . (19) 
1 is a positive integer, which determines the range of the 

coefficient. p ,  is the number of terms used in each 
coefficient. The minimax objective function is used in 
the design of the prototype filter: 

(20) D,, = max 1) H(e'" ) I - 1 H ,  (e'<" ) 11 , 
where H ( z )  and H d ( z )  are respectively the actual and 
ideal frequency responses of the prototype filter. The 
modulation matrix is designed using a similar minimax 
objective function 

(21) 

where F~ (e'") and kk (e'") are respectively the actual 
and ideal frequency responses of the k-th analysis filter of 
the SOPOT MFB.The SOPOT coefficients are found by 
minizing D, and D, using the Genetic Algorithm. 

V. DESIGN EXAMPLES 
Fig. 3(a) and 3(b) show, respectively, the frequency 
responses of the prototype and the analysis filters of an 
16-channel SOPOT MFB. The cutoff frequency of the 
prototype filter is a, =O.O75n and its stopband 
attenuation is 37 dB. Because of the linear-phase 
property of the prototype filter, there are altogether eight 
different lattices. Polyphase components H, ( z )  and 

H,+,,(z) are derived from the q-th lattice, and all of 

them have two lattice coefficients aq,l ,aq 2 ,  i.e. (m=2). 

D,,,  my-/^^ = max 11 4 (e'") I - I t ( e f " )  III , 

20 -2-3 -2-7 2-1 +24-2-7 

2-1 + 2-1 -2-5 

20 - 2-3 - 2 4  

2-3 -2" 

2O - 2' 
20 - 2-7 

2-3 + 24 + 2" t 2-7 

2-1 + 2-2 t 2' 
2-1 + 2-3 

2-1 + 2-2 - 24 + 2 4  

2-1 t 2' 
2-3 + 24 t 2-1 + 2-8 
2-1 - 2-4 - 24 - 2-7 

I I I 4 . 2  I 

(x=1/16, 5/16, lB),  S,,,,, S,,,,, , and s5/ ,6  can be 
derived from S,,,, , and SI,, , respectively. The 
number of variables is therefore reduced and their details 
are as follows: 
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Fig. 1. Block diagrams of (a) M-channel uniform filter banks, 
(b) polyphase implementation of the cosine-modulated analysis 
filter bank. 

Fig. 2. Lossless lattice structure of the prototype filter in [ I ]  
111 

(hq = n ( l + a : , J o S ) .  
$4 

0 005 01 015 02 025 03 035 04 045 05 
- 1 0 0 ~ " " " " "  

(a) 

0 005 01 015 0 2  025 03 035 04 045 0 5  
- e n " " " " '  

(b) 
Fig. 3. Frequency responses of the 16-channel SOPOT MFB: 
(a) prototype filter (length=64, as = 0 .075~  , A, = 37dB ), (b) 
analysis filters, A, = 34dB . 
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