
IMPLEMENTATION OF OVERLAPPED BLOCK FILTERING USING SCHEDULING BY
EDGE REVERSAL

Charles B. do Prado, Paulo S.R. Diniz and Felipe M.G.França

COPPE/Federal University of Rio de Janeiro
C.P. 68504, Rio de Janeiro, 21945-970,Brazil.

e-mail:bezerra@lps.ufrj.br, diniz@lps.ufrj.br, felipe@cos.ufrj.br

ABSTRACT

Implementation of overlapped block filtering using Schedul-
ing by Edge Reversal (SER) is proposed in this paper. S-
ER is a very simple and powerful synchronizer. It allows
more efficient implementation of parallel structures. This
technique is applied for the first time to FIR filters using
the overlapped block digital filtering, and implemented on
a parallel computer plataform. The results confirm the ex-
pected reduction in computation time.

1. INTRODUCTION

Block digital filtering has been largely used in many prac-
tical situations. Firstly, it allows that the frequency spec-
trum of the signal to be processed in narrower subbands.
Since these frequency bands expose the distribution of sig-
nal power with more resolution, then specific filtering can
be applied to the signal subbands with higher energy using
filters with short length.

The basic block diagram of digital filter is shown in fig-
ure 1 in which the input sequence is converted into a series
of contiguous blocks of length L by means of a serial-to-
parallel converter. Each input block is processed simulta-
neously by an L-input, L-output block digital filter charac-
terized by a transfer matrix P (Z). Each L-output is then
converted back into a serial format by means of a parallel-
to-serial converter.

input

L x L
Block
Digital
Filter
P(z)

 c
on

ve
rt

er

se
ri

al
-t

o-
pa

ra
lle

l

pa
ra

lle
l-

to
-s

er
ia

l

 c
on

ve
rt

er

0

1

2

L-1

0

2

L-1

1

y(n)
output

x(n)

Figure 1: Conventional block digital filter

Another advantage of block processing is the possibil-
ity of using parallel structures to reduce the computational

complexity and computation time of digital filtering system-
s. Lin and Mitra [1] have recently developed the block pro-
cessing considering overlapped input and/or output blocks
which can be implemented using parallel structures. Figure
2 illustrates the representation of overlapped block digital
filtering, where L represents the input block size, N rep-
resents the output block size, and M is the down-sampling
(up-sampling) factor. When L = M , the input blocks are
not overlapped, and when L > M , the input blocks are
overlapped. Likewise, when N = M , the output block are
not overlapped, and when N > M , the output blocks are
overlapped.

N-1

M M

z-1

M
z-1

M M

M

z-1

z-1
P(z)

N x L
 Block
 Digital
 Filter

y(n)
 output

x(n)
input

1

0

L-1

0

1

Figure 2: Multirate representation of an overlapped block
digital filter

In this paper, we propose a parallel implementation for
overlapped block digital filtering using Scheduling by Edge
Reversal (SER) [2] [3]. SER is a powerful parallel and
distributed graph-based algorithm developed for controlling
concurrent operation amongst the elements of neighborhood-
constrained systems of generic topologies.

The next section reviews the basic concepts of parallel
block digital filtering. Section 3 introduces the Scheduling
by Edge Reversal (SER) technique. Section 4 describes the
proposed parallel implementation and results. The last sec-
tion includes conclusions and suggestions for future works.

V-97

0-7803-5482-6/99/$10.00 ©2000 IEEE

ISCAS 2000 - IEEE International Symposium on Circuits and Systems, May 28-31, 2000, Geneva, Switzerland

2. PARALLEL BLOCK DIGITAL FILTERING

Lin and Mitra [1] have developed a parallel structure for
implementing FIR filters using the overlapped block digi-
tal filtering. Using this framework, two fast FIR filtering
algorithms were derived.

The first algorithm is based on a structure called Type A.
In this structure the input blocks are not overlapped, where-
as, the output blocks are overlapped. We can choose an
input block size of L = M , and an output block size of
N = 2M � 1. The block transfer matrix, P1(z), is repre-
sented below.

P1(z) =

2
66666666664

HM�1(z) 0 � � � 0
HM�2(z) HM�1(z) � � � 0

...
...

. . .
...

H0(z) H1(z) � � � HM�1(z)
0 H0(z) � � � HM�2(z)
...

...
. . .

...
0 0 � � � H0(z)

3
77777777775

(1)

The second algorithm is based on a structure called Type
S. For a Type S structure the input blocks are overlapped,
whereas the output blocks are not overlapped. We can choose
a structure with N = M , L = 2M � 1. The block transfer
function matrix, P2(z), is shown below.

P2(z)=

2
6666664

H0(z) H1(z) ��� HM�1(z) 0 ��� 0

0 H0(z) ��� HM�2(z) HM�1(z) ��� 0

...
...

. . .
...

...
. . .

...
0 0 ��� H0(z) H1(z) ��� HM�1(z)

3
7777775

(2)

(z)+ H (z)
z

z-1

z-1

 -1 1 -1

 1 0 0

 0 0 1

2

2

2

y(n)(z)0H

0 1

1 1

1 0 H0

H (z)1
2

2

-1

x(n)

 1

Figure 3: Example of Type A structure

Figure 3 shows a Type A structure for the case where
L = M = 2, and N = 3. This structure was derived by
decomposing matrix P1(z) as follows

2
4

H1(z) 0

H0(z) H1(z)

0 H0(z)

3
5 =

2
664

1 0 0

�1 1 �1

0 0 1

3
775

:

2
664

H1(z) 0 0

0 H0(z)+H1(z) 0

0 0 H0(z)

3
775

:

2
664

1 0

1 1

0 1

3
775

(3)

Each polynomialHi(z), for i = 0; 1, in (3) corresponds
to a filtering operation with an FIR filter of about half the
length of the original filter H(z), being its polyphase com-
ponents.

Figure 4 shows a Type S structure. This structure is
exactly the transpose of Type A overlapped block structure.
In both structures the number of subfiltering operations has
been reduced from 4 to 3, reducing the computational com-
plexity.

-1

 -1 1 -1

 1 0 0

 0 0 1 0 1

1 1

1 0

2z-1

z-1

(z)0H

H0

H (z)1

 1(z)+ H (z)

y(n)2

2

2

2

z

x(n)

Figure 4: Example Type S structure

By using Type A structure presented, we will develop
an parallel implementation for FIR filter using SER.

3. SCHEDULING BY EDGE REVERSAL -SER

SER [2] [3] is based on the idea of a population of processes
executing upon access to shared atomic resources. Shared-
resources systems are represented as a finite oriented graph
G = (N;E) where processes are the nodes of G and an
oriented edge exists between any two nodes whenever they
share a resource. A process is allowed to operate if it has all
its edges directed to itself, a sink in G.

SER works starting from any acyclic orientation w on
G. This means that there is at least one sink node. Con-
sider, just for the purpose of this explanation, an ideal syn-
chronous environment where according to the beginning of
a clock pulse, only sinks are allowed to operate while oth-
er nodes remain idle. After operating and before the clock
pulse ends, sinks reverse the orientation of their edges by
sending messages to all their neighbors, each one becoming
a source. It is easy to see that, again, another acyclic ori-
entation, w’, is formed and a new set of sinks can operate

V-98

at the next clock pulse. All subsequent orientations are also
acyclic and the scheduling mechanism consists basically of
consecutive sets of sinks being defined in G through time.

Some fundamental SER properties will now be present-
ed.

Lemma 1 Let ! and !’ be acyclic orientations of G such
that !’=g(!). A sink in !’ has at least one neighbor that is
a sink in ! [3].

Let mi(q) define the number of times node I 2 N operates
in q consecutive acyclic orientations under SER. The fol-
lowing theorem states a strong form of starvation freedom.

Theorem 1 Consider nodes i,j 2 N , and let the shortest
path connecting them in G have r edges. Then jm i(q) �
mi(j)j�r for all q�l [3].

Theorem 1 shows that this simple dynamics is, consequent-
ly, free of deadlocks or starvation since there will be always
at least one sink node and since the maximum amount taken
for a node to become a sink is directly related to the longest
directed path from it to a sink. Assuming that G is finite,
eventually a set of acyclic orientations will be repeated. De-
rived from Theorem 1, SER’s fairness is a very interesting
property presented in the corollary below.

Corollary 1 The number of times that a node becomes a
sink in a period is m, the same for all nodes in G [3].

As the number of such acyclic orientations is finite, even-
tually a set of orientations will repeat. This defines a period
of length p of orientations. It is proved that inside any period
every node operates exactly m times. The concurrency of a
period is defined by the coefficient m=p. It is clear that the
higherm=p is, less idle are every node through each period.

SER is a fully distributed algorithm. Its operation, after
the initial reset, does not depend on any global signaling
in order to work, as the decision that a node start or finish
operating can be fully local. Another interesting property
of this graph dynamics lies on its generality in the sense
that any particular topology will have its own set of possible
SER dynamics.

Figure 5 presents the equivalent graph G for Type A
structure shown in Figure 3, where the node 1 is in black
to represent one sink. Each node corresponds to one pro-
cessor. Node 1 is responsible for decimation and creation
of input vectors to sub-filters H1(z), H0(z) + H1(z) and
H0(z). These filters are represented by nodes 2, 3 and 4,
respectively. Node 5 is responsible to receive the output-
s of each sub-filter, interpolate them and create the output
vector. Figure 6 shows us the graph G under SER.

51

2

3

4

�����
�����
�����
�����

Figure 5: Graph G for the Type A structure

5

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

����
����
����

����
����
����

1

2

3

4

5 1

2

3

4

5

1

2

3

4

Figure 6: Graph G under SER, with m = 1 and p = 3, i.e.,
each node is a sink (in black) once in three synchronous
steps

4. PARALLEL IMPLEMENTATION AND RESULTS

The structure presented in figure 3 was implemented on a
parallel computer platform, the TN-310 system [4]. This is
a 16 node Transputer/digital signal processor (DSP) based
parallel machine with distributed memory. The machine al-
lows all nodes to communicate to each other and, conse-
quently, each node can access data held anywhere in the
system (see figure 7).

For task involving signal processing, the TN-310 sys-
tem has a fast and powerful DSP (ADSP-21020) coupled
to each processing node. The DSP acts as a coprocessor to
the T9000 (Transputer) and can be programmed from the
T9000 through C runtime library calls. The TN-310 system
can be accessed through a host machine, which, in our case,

V-99

Figure 7: The architecture of the TN-310 system and the
interconnection of the two boards of processors. Extracted
from [4] .

is an IBM PC.
Developing an application in this environment compris-

es two phases. In the first, the user configures the available
hardware according to the target application. This phase
describes the parallel application in terms of number of pro-
cessors, amount of memory for each processor, interconnec-
tion matrix of processors, the use of cache memory and con-
trol signal. In the second phase, the user develops high-level
codes (in C language) according to the resources available
from the hardware configuration of the first phase.

In this TN-310 environment we implemented Type A
structure to FIR filters using SER (figure 5). Table 4 shows
us the computation time of the parallel structure as com-
pared with computation time of the direct form implemen-
tation of the same transfer function. It lists the overall com-
puter time needed to calculate 10 000 output samples for
two filters of different lengths.

5. CONCLUSIONS

The implementation parallel overlapped block filtering us-
ing SER was developed. The structure presented in Figure 5

Table 1: Comparison of Computer Times: M=2 Case

filter order 30 100
overlapped block 271804 597243
direct form 792830 1901807
speed-up 2.9 3.1

was implemented in the TN-310 system. The computation-
time ratio obtained between direct form and overlapped block
implementation using SER was about 0:3, therefore the total
computation time was significantly reduced.

For type A structure presented in this paper, theoretical-
ly, the ratio between the computation times of the fast algo-
rithm and the direct implementation should approach 75%
when the filter length increases, because the number of sub-
filtering operations have been reduced from 4 to 3. How-
ever, using SER in the structure with 5 processors, we ob-
tained the ratio of approximately 30% which is better than
the expected computation-time ratio. This proves that S-
ER is very powerful in parallel implementation applications
such as the one presented in this paper.

Even though SER has been applied to a particular im-
plementation, it can be used in many other applications in
which it is possible to employ a parallel structure. SER,
for example, can be used in the implementation of parallel
adaptive filters [5]-[6].

6. REFERENCES

[1] LIN, I. S., MITRA, S. K., “Overlapped Block Digital
Filtering”, IEEE Trans. Circuits Syst, v. 43, n. 8, Aug
1997.

[2] BARBOSA, V. C., GAFNI, E., “Concurrency in heav-
ily loaded neighbourhood-nontrained systems”, ACM
Transactions on Prog. Languages and Systems, v. 11,
n. 4, Oct 1996.

[3] BARBOSA, V. C., An Introduction to Distributed Algo-
rithms. MIT Press, 1996.

[4] TELMAT MULTINODE, TN 310 System Manual and
Training Set. France, 1995.

[5] DINIZ, P. S. R., Adaptive Filtering: Algorithms and
Practical Implementation. Norwell, MA, Kluwer Aca-
demic Publishers, 1997.

[6] R. MERCHED, P. S. R. D., PETRAGLIA, M. R.,
“A New Delayless Subband Adaptive Filter Structure”,
IEEE Trans. on Signal Processing, v. 47, pp. 1580–
1591, Jun 1999.

V-100

