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ABSTRACT

Recent research has shown that the speed of image processing achieved by the human visual system is incompatible with
conventional neural network approaches that use standard coding schemes based on firing rate. An alternative is to use
networks of asynchronously firing spiking neurones and use the order of firing across a population of neurones as a code. In
this paper we summarize results that demonstrate a number of advantages of such coding schemes: (1) they allow very
efficient transmission of information, (2) they are intrinsically invariant to variations in stimulus intensity and contrast, (3)
they can be used in very large scale processing architectures to solve difficult problems including categorisation of objects
in natural scenes, and (4) they are particularly suited for implementation in low-cost multi-processor hardware.

1. INTRODUCTION

Over the last two decades, artificial neural networks have
been used in a wide range of applications in areas as diverse
as engineering and control systems as well as financial
prediction. However, in many areas, even the most
sophisticated artificial systems look feeble when compared
with their biological counterparts. Take the case of vision.
Both humans and monkeys can decide very rapidly whether
a briefly flashed colour photograph contains an animal [2,
5], even when the image has never been seen before. Such
levels of performance are way beyond the capabilities of
current machine vision systems. What is it that makes
biological vision so effective? Is it possible to use
knowledge of visual processing in biological systems to
devise novel engineering solutions that could one day
rival human vision?

In this paper, we will argue that there is one particular
feature of biological visual systems which is absent from
virtually all systems that use artificial neural networks.
Conventional neural networks use large arrays of
processing elements, roughly equivalent to neurones, each
of which is characterised by an activity level which is often
a continuous variable in the range 0-1. However, real
neurones do not in general transmit information in the form
of a continuous analog signal. Instead, they send a series of
all-or-none pulses or spikes. It is only relatively recently
that researchers have come to realize that the use of spikes
dramatically changes the types of computation that can be
performed by a neural network [4]. In this paper we will
argue that the use of networks of spiking neurons may be a
key feature underlying the efficiency of biological vision
systems, and that spikes may provide a particularly
efficient way of implementing neural networks in parallel
digital hardware.

2. CODING WITH SPIKES

2.1 Problems with Conventional Rate
Codes

The analog activation value attributed to units in artificial
neural networks is often taken to correspond to the firing
rate of biological neurones. But recent work on the speed of

processing in the visual system has raised questions about
the viability of such a scheme[3]. For example, in a scene
classification task, monkeys can have behavioural reaction
times that can be as short as 180 ms.  If one subtracts
roughly 80 ms for initiating and executing the motor
response, this leaves only about 100 ms for visual
processing. Interestingly, this is roughly the onset latency
of neurones in the inferotemporal cortex, the highest order
visual processing stage in the primate visual system,
implying that much if not all of the underlying processing
can be achieved with a single feed-forward pass through the
various levels of the visual pathways. Indeed, to get to
inferotemporal cortex, information about the image has to
traverse a number of processing stages that include
ganglion cells in the retina, relay cells in the thalamus,
cortical areas V1, V2, V4, and the posterior inferotemporal
cortex.  Calculations suggest that each of these stages only
has about 10 ms to do the necessary computation. Ten
milliseconds may seem plenty of time given the speed of
today's electronics, but the neurones in the visual system
rarely generate pulses at more than 100 or so spikes per
second. This means that in many cases, each neurone will
only fire one spike during the criticial 10 ms available for
processing. How can the visual system function with so
little time for processing by each individual element?

The usual response is to use large numbers of neurons in
parallel. Suppose that we wish to code a particular
parameter, such as the grey-scale value of a pixel, with 10
possible values and that we want to do this within a 10 ms
time period, too short to allow any individual neuron to
fire more than one spike. Obviously we could choose to use
10 different neurones, and simply count the number of cells
that fire within the 10 ms period. This will certainly work,
but has the drawback that it requires very large numbers of
units. For example, we know that the optic nerve contains
roughly 1 million fibres. This number of fibres is clearly
sufficient to transmit the contents of the entire visual field
to the brain, so it seems unlikely that there can be much
redundancy available for coding individual pixels in the
image. Rather, it would appear that the retina is using a
much more efficient coding scheme to transmit information
to the brain, but what is it?
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2.2 Rank Order Coding

One possibility takes advantage of the fact that a neuron
can be thought of as an analog-delay convertor. It acts
somewhat like a capacitance which is progressively charged
by an input until it reaches a threshold, at which point it
generates an output pulse – the action potential or spike.
Such neurons will naturally fire earliest when the input is
strong, and will take progressively longer to fire when the
input is weaker. In this way, the time at which a neuron fires
(its response latency) can be used to code the intensity of
the stimulus.

However, this sort of code requires knowledge of when the
stimulation started, information which is not generally
available in the case of the biological visual system. There
is, however, a way round this. Consider what happens when
several neurons are used in parallel. In this case, even
without knowing the precise moment at which the stimulus
came on, information can be obtained by looking at the
order in which the neurones fire [6].

It is not difficult to see that the order of firing of a group of
neurons is potentially a very rich source of information
about the input pattern. Take for instance the 10 neurons
that we previously used to code ten grey scale levels for a
single pixel. Suppose that those 10 neurons are connected
to 10 different pixels, and that we can look at the order in
which they fire. With 10 neurons, there are factorial 10
possible orders than can occur – a total of over 3.6 million.
Each of these corresponds to a different intensity profile
and thus provides a great deal of information about the
stimulus within a very short period of time.

3. BIOLOGICAL IMAGE
COMPRESSION

To illustrate how such a scheme can work, we will look at
the work of Rufin van Rullen, who has recently examined
how this sort of rank-order coding scheme could be used by
the retina to transmit information to the brain[8]. Van
Rullen used a very simple model of the retina, in which two
different sets of neurones were used – On-centre and Off-
centre cells. ON-centre cells respond best to a bright spot of
light on a dark background, whereas the Off-centre cells
prefer dark spots on a bright backgroung. The use of the
analog-delay conversion scheme that we just described
means that the time of firing will vary depending on the
local contrast, with high contrasts leading to short
response latencies. Van Rullen also used ON- and OFF-
centre cells at different scales, starting with one cells per
pixel at the highest resolution, one cell for every four
pixels when the scale was doubled and so on.

Imagine now that we are in the brain, listening to the
activity in the hundreds of thousands of nerve fibres as a
result of the presentation of a natural image. Our job is to
try and reconstruct the image as well as we can, simply on
the basis of the spikes in the optic nerve. How might we go
about this? Let us suppose that the first spike occurs in a
cell that we know corresponds to a large OFF-centre retinal
cell centred at a particular location in the retina. Obviously
we can plug the receptive field shape of this cell in the
reconstructed image. Subsequently, as more and more
spikes arrive, we can progressively fill in the image using
the receptive field profile of the neurons that fire. Note
however, that we can be a little more sophisticated. We
know that in principle, the first neurons to fire will
correspond to the places in the image where the contrast is
highest, whereas those neurons that fire later on should be

given a lower impact. In principle, there is no strict law
determining how one should decrease sensitivity, but Van
Rullen calculated the average contrast in natural images
associated with particular orders using a representative set
of 3000 natural scenes.

By using this empirical Look-Up Table for contrast as a
function of order, it is possible to see how well one can
reconstruct an image as a function of the number of cells
that have fired. This is illustrated in Figure 1, which shows
that even when only 1-2% of cells have fired one spike, it is
often possible to make quite clear statements concerning
the contents of the image.

Figure 1. Progressive reconstruction of images

based on the order of firing of retinal ganglion cells
[8].

Comparisons with coding schemes based on neurons that
uses rate coding showed that coding based on the order of
firing of retinal ganglion cells is considerably more
efficient. Furthermore, it is interesting to note that this sort
of coding scheme has another important advantage in that
it performs an automatic normalisation of the image with
respect to contrast and luminance. Since the only thing that
is important for the reconstruction is the order of firing,
exactly the same output image would be produced if the
contrast of the image was reduced or if the luminance was
lower. Of course, we lose the ability to recover the absolute
grey level values of  the pixels in the image, but that is true
for human vision too – humans are also notoriously
inaccurate at estimating true image luminance levels.

Van Rullen's study of retinal coding demonstrates that the
order of firing of spiking neurons can be used to code
information efficiently. In the next section we will show
that a simple biologically plausible mechanism can be used
to make neurons sensitive to the order of firing of their
inputs.



4. RANK ORDER DECODING
Suppose that we want to make a neuron that will respond
selectively to the order in which its inputs fire. One
obvious possibility would be to use a series of delay lines
so that the inputs will arrive synchronously only if the
correct delays are used. This strategy is used in a range of
sensory systems that use temporal differences between
arrival times of sensory stimuli, as for example in the case
of auditory sound localisation. However, it is an expensive
strategy that needs a relatively large amount of specialist
hardware.

An alternative "trick", much simpler to implement, is to use
fairly standard neurons, but include a mechanisms that
progressively desensitizes the post-synaptic neuron
following each incoming spike [6]. Consider a neuron with
3 inputs, A, B and C, that have relative synaptic weights of
3, 2 and 1 units. Suppose that each time an input arrives,
the sensitivity of the neuron is cut by a factor of 50%. Now,
how much exicitation will the cell receive if the inputs fire
in the order A>B>C? It is easy to see that the final
activation will be equal to 3 + (2*0.5) + (1*0.25) = 4.25 and
that this is the highest possible activation that can be
produced when each input is only allowed to fire once. For
example, the opposite order, C>B>A, would only produce
2.75 units of excitation. Thus by setting the threshold at an
appropriate level, one can make the neuron as selective as
one wants. With three inputs, the total number of possible
orders is very low – just 6, but with more realistic numbers
of inputs, neurons can be made extremely selective.

5. SPIKENET
To test the impact of such ideas, we have developed a
simulation system called SpikeNET that is specifically
designed for simulating very large networks of
asynchronously firing integrate-and-fire neurons[1]. The
results have been extremely encouraging and suggest that
the computational potential of networks of spiking
neurons may be very high. In the final sections of this
chapter, we will illustrate how SpikeNET can be used to
develop image processing systems of a radically new type
that are (a) capable of performing challenging visual
categorisation tasks using natural images, and (b) suitable
for implementation on low cost parallel computer hardware.

5.1 Face Detection with SpikeNet

Van Rullen et al showed that a four layer feed-forward
network of asynchronously spiking neurons could be used
to detect the presence of a face, even when none of the
neurons fires more than one spike [7]. The network was an
extremely simple one composed of three layers (see figure
2). Layer one corresponds very roughly to the retina and
contains On- and Off-centre cells that generate at most one
spike, with a latency that depends on local contrast, just as
in the model presented in the previous section. These cells
project to 8 arrays of neurons in layer two, each tuned to
respond optimally to contours at a particular orientation.
Thus cells in the map corresponding to 0° will respond
very rapidly when a high contrast vertically oriented edge
is present at a particular location in the image. These
second level units project to a set of maps in the third layer,
that were "trained" to respond selectively to the presence of
a right eye, a left eye or a mouth in the image. The training
scheme uses a a supervised learning algorithm that fixes
synaptic weights as a function of the order in which the
inputs fire – inputs that tend to fire early are given high
weights, whereas those that fire late are given low weights.

This arrangement, together with the progressive
desensitisation mechanism described in the previous
section, makes the neurons in the third layer selective to
the particular face features. Finally, these maps feed on to a
final map that responds to the presence of appropriately
located activity in the three input maps, namely a left eye,
right eye and mouth.

Figure 2. A simple three layer feed-forward
architecture that is capable of accurate face
identification [7].

Figure 3 shows how activity propagates through such a
network in response to an image containing a face. Within
each map, the grey scale values are used to depict the order
of firing – bright points correspond to places where the
neurons fired early on, whereas neurons that fired later on
are increasingly dimmer. It can be seen that activity in the
the three feature maps and within the "face" map is
localised and can be used to determine the position of the
face in the image.

Figure 2. Propagation of activity within the face
detection network described by Van Rullen et al [7].

5.2 Parallel implementation

Even on a single desktop computer, SpikeNet is capable of
simulating large networks of neurons efficiently. For
example, recent work has involved networks containing as
many as 30 million neurons and over 3 billion synaptic
connections. But despite their large size, such networks can
still be run on a single workstation, as long as there is
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plenty of RAM available. Obviously the penalty one has to
pay is speed, because with such a large system, propagating
a single image can take 30 seconds or more. However, the
very nature of SpikeNet means that it is relatively
straightforward to take advantage of clusters of
workstations and even low cost multiprocessor hardware.
The reason is that each array of neurons can be handled by a
separate processor using local memory. In this case,
communications between processors are essentially limited
to sending lists of spikes, i.e. the neurons that fired during
the previous time step.

Let us take a concrete example. Suppose that we want to
simulate a network with 5 million neurons using 5
workstations linked together in a cluster, and that real-time
performance requires an average firing rate of 1
spike/second per neuron. Each second, each  workstation
would need to transmit the coordinates of 1 million units,
which, using a code that used 20 bits per neuron, would
require a debit of 20 Mbits per second. By using multicast
techniques it would theoretically be possible to simulate
such a 5 million neuron network in real time without
requiring more than standard 100 Mbit Fast Ethernet
connection technology. And with techniques such as
Gigabit Ethernet and the VIA protocol (Virtual Interface
Architecture), it will soon be possible to increase the
network traffic by a factor of 10.

We are also working on multiprocessor hardware that can be
used to further improve parallelism. In collaboration with
Simtec Electronics (http://www.simtec.co.uk), a UK-based
company  we have developed a computational module
based on the low-power StrongARM processor. Each
module is composed of the CPU, 64 Mbytes of SDRAM, a
Flash Memory chip, and a PCI bridge chip. Eight such
modules can be mounted on a single PCI board, and four
such boards can be fitted in a single desktop PC. In
conventional workstation clusters, communications
between processors are handled using standard Ethernet
interconnects (typically limited to 100 Mbits per second).
But in the case of the multiprocessor boards,
communications between processors make use of local PCI
interconnections that allow transfers at up to 132 MBytes
per second – more than 10 times the debit of fast Ethernet.
Furthermore, since each PCI board would effectively have
its own local PCI bus, the total aggregate bandwidth within
a PC equipped with 4 of the 8 CPU boards could be as high
as 2 Gigabytes per second. In addition, second generation
PCI bridge chips will mean that the speed of data transfers
could be increased by a factor of four.

Interprocessor communication limits the number of spikes
that can be handled per second. But it is the local processor
and memory architecture that defines how many synapses
can be implemented. Suppose that a particular processor
receives a spike from a processor located somewhere else.
At this point, the SpikeNet kernel has to update all the local
neurons that receive inputs from that neuron. The number
involved could be large, maybe hundreds or even
thousands. However, all these local computations only
involve local memory accesses, which are independent of
the rest of the system. Furthermore, there is enormous
potential for optimising the code using multimedia
instruction such as MMX, SSE and Altivec. For this reason,
it seems likely that by using fast interprocessor
communications for transmitting spikes, and highly
optimised local processing, it should soon be possible to
develop architectures capable of allowing real-time
simulation of spiking neural networks with millions of
neurons and billions of connections.

6. PERSPECTIVES

We have really only just begun what will certainly be a
long term project aimed at reverse engineering the primate
visual system. For the moment, we have only explored
some very simple architectures, involving essentially just
feed-forward architectures involving a relatively small
numbers of layers. However, the results obtained so far
indicate that we may well be on the right track. Performance
in tasks such as face identification is remarkably good,
given the simplicity of the architectures used, and we are
convinced that adding features such as horizontal
connections between neurons at the same level, and
feedback connections between structures will improve
performance even more. In the years to come, we will strive
to incorporate as many of the computational tricks used by
the primate and human visual system as possible. More to
the point, it seems that by adopting the spiking neuron
approach, it will soon be possible to develop sophisticated
systems capable of simulating very large neuronal
networks in real time. The enormous potential of such an
approach has led to the creation of a start-up company,
SpikeNet Technology (http://www.spikenet-
technology.com), that is aimed at making the potential of
spiking neural networks available to end-users in a wide
range of application areas.
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