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Abstract

The problem of estimating the di�erence in arrival times of a sinusoid received at two spatially

separated sensors is considered. Given the sinusoidal frequency, a simple delay estimator using the

phase di�erence of the discrete time Fourier transforms (DTFTs) of the received signals is devised.

With the use of periodogram, the algorithm is extended to estimate the delay when the frequency is

unknown. The minimumachievable delay variances for the cases of known/unknown frequencies and

constant/rectangular envelopes are also derived. The e�ectiveness of the method is demonstrated

by comparing with the performance bounds for di�erent frequencies, envelopes and noise conditions.
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I. Introduction

Estimation of the time delay between two noisy versions of the same signal received at two spatially

separated sensors has important applications such as direction �nding, source localization and velocity

tracking [1]. The mathematical model of the discrete-time sensor outputs is given by

r1(n) = s(n) + q1(n)

r2(n) = s(n�D) + q2(n); n = 0; 1; :::; N � 1

(1)

where s(n) is the signal of interest, q1(n) and q2(n) represent additive noises which are independent of

s(n), D is the di�erence in arrival times at the two receivers and N is the number of samples collected

at each channel. Without loss of generality, the sampling interval is assigned to be unity second.

Many methods have been proposed for time delay estimation in the past two decades [1]-[8]. Gener-

alized cross correlator (GCC) [2]-[4] is a conventional approach to the problem and its delay estimate is

found by locating the peak of the cross correlation function of the �ltered versions of r1(n) and r2(n).

When s(n), q1(n) and q2(n) are all uncorrelated Gaussian variables, it has been proved [2] that the

GCC can provide maximum likelihood (ML) delay estimation. However, implementation of the GCC

requires a priori statistics of the received signals and thus in the absence of these information, the

desired performance is di�cult to achieve in practice [4]. Moreover, it fails to work if the noises are

impulsive [5] or spatially correlated [7]. In the presence of impulsive noise modeled as alpha-stable

random process, accurate delay estimates can be attained using the fractional lower order statistics

(FLOS) based techniques [5]-[6]. On the other hand, the higher order statistics (HOS) approach is an

e�ective solution for correlated noises when the signal is a non-Gaussian random process and the noises

are Gaussian distributed [7] or vice versa [8].

The aim of this paper is to devise a simple and accurate time delay estimator when the source

signal is deterministic, speci�cally for a pure sinusoid that commonly occurs in radar, sonar and digital

communications [9]-[11], although the GCC can be employed in deterministic signal condition [3]. In

our study, we consider that s(n) is analytic and has the form

s(n) = a(n) exp(j!0n + �) (2)

where a(n), !0 2 (0; �) and � 2 [0; 2�) represent the real envelope function, radian frequency and

unknown constant phase of the sinusoid, respectively. It is assumed that q1(n) and q2(n) are uncorre-

lated zero-mean complex white Gaussian processes with variance �2q and D 2 (��=!0; �=!0) to avoid

ambiguous delay estimates.

The paper is organized as follows. Based on the discrete-time Fourier transforms (DTFTs) [12] of

the two sensor outputs, a computationally e�cient delay estimation algorithm for sinusoidal signals is

developed in Section II, assuming that !0 is known. The estimator variance in the case of constant

2

This paper is a postprint of a paper submitted to and accepted for publication in IEE Proceedings - Radar, 
 Sonar and Navigation and is subject to Institution of Engineering and Technology Copyright.  
The copy of record is available at IET Digital Library.



envelope is also derived. Section III modi�es the proposed method for unknown frequency with the use

of periodogram. The Cram�er-Rao lower bounds (CRLBs) [10] of the delay estimates for the cases of

known/unknown frequencies and constant/rectangular envelopes are derived in Section IV. Section V

evaluates the estimation accuracy of the DTFT based approach via comparison with the performance

bounds, and �nally, conclusions are drawn in Section VI.

II. The Proposed Method

In this section, a simple delay estimator for sinusoidal signals with known frequency is developed.

For ease of analysis, we assume that the signal has an unknown constant envelope with a(n) = A,

n = 0; 1; � � � ; N � 1, although the proposed method can work for other envelopes. The DTFT of r1(n)

is given by

R1(!) =
N�1X
n=0

r1(n)e
�j!n

= Ae
j(�+(!0�!)(N�1)=2)sin(

(!0�!)N

2
)

sin(!0�!2 )
+

N�1X
n=0

q1(n)e
�j!n (3)

In the time domain, the signal-to-noise ratio (SNR) of r1(n), denoted by SNR1, is equal to A
2
=�

2
q .

On the other hand, it can be easily shown from (3) that the SNR of jR1(!0)j
2, SNR2, has a value of

NA
2
=�

2
q , which is N times larger than SNR1. It is because the signal power is concentrated at ! = !0

while the noise power equals N�
2
q for all frequencies in the DTFT domain. Motivated by this fact, the

DTFTs of the sensor outputs at ! = !0 are used to estimate the time delay as follows. For SNR1 >> 1,

R1(!0) can be approximated as [13]

R1(!0) = NAe
j� +

N�1X
n=0

q1(n)e
�j!0n

� NAe
j�
e
j=fX(!0)g (4)

where

X(!0) =
1

NA

N�1X
n=0

q1(n)e
�j(!0n+�) (5)

and =fxg denotes the imaginary part of x. The phase angle of R1(!0) is thus of the form

6 fR1(!0)g � �+ =fX(!0)g (6)

whose mean value is � and has a variance of 1=(2SNR2). Similarly, the phase of the DTFT of r2(n) at

! = !0 is given by

6 fR2(!0)g � � � !0D + =fY (!0)g (7)
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where

Y (!0) =
1

NA

N�1X
n=0

q2(n)e
�j(!0(n�D)+�) (8)

The quantity 6 fR2(!0)g has the expected value of � � !0D and its variance is identical to that of

6 fR1(!0)g.

Using the phase di�erence of R1(!0) and R2(!0), the delay estimate, denoted by D̂, is computed as

D̂ =
6 fR1(!0)R

�

2(!0)g

!0
(9)

where � represents the conjugate operation.

Let 1 = <f

P
N�1
n=0 q1(n)e

�j!0ng, 2 = =f

P
N�1
n=0 q1(n)e

�j!0ng, 3 = <f

P
N�1
n=0 q2(n)e

�j!0ng and

4 = =f

P
N�1
n=0 q2(n)e

�j!0n
g where <fxg represents the real part of x. Notice that these four terms

contribute to the random components of D̂ and they are independent to each other and have zero

means. As a result, the variance of D̂, denoted by var(D̂), is fully due to the noise terms 1, 2, 3 and

4 and it is given by [14]

var(D̂) =
4X
i=1

0
@ @D̂

@i

�����
i=Efig

1
A
2

Ef
2
i g (10)

where E is the expectation operation. This expression can be simpli�ed and modi�ed to (Appendix I)

var(D̂) = min

(
�
2

3!20
;

1

!20NSNR1

)
(11)

which is a constant if NSNR1 < 3=�2, and is inversely proportional to !0, N and SNR1, otherwise.

III. Extension to Unknown Frequency

It is well known that [15] the periodogram will give the ML estimate of frequency for a single complex

sinusoid in white noise. With the use of periodogram, an iterative procedure is proposed to �nd D

when !0 is not known, as follows.

1. Use periodogram to get an initial estimate of !0, !̂0:

!̂0 =
argmax

!
fPr1(!)g+ argmax

!
fPr2(!)g

2
(12)

where

Px(!) =
1

N

�����
N�1X
n=0

x(n)e�j!n

�����
2

(13)

denotes the periodogram of x(n).

2. Compute the initial delay estimate as

D̂ =
6 fR1(!̂0)R

�

2(!̂0)g

!̂0
(14)
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3. Construct a 2N -length sequence z(n) from r1(n) and r2(n) of the form

z(n) =

8>>><
>>>:

r1(n) ; n = 0; � � � ; N � 1

r2(n�N)ej!̂0(D̂+N)
; n = N; � � � ; 2N � 1

(15)

which can be considered as a noisy sinusoid with frequency !0. Since the variance of the ML

frequency estimate is asymptotically proportional to one over the cube of the observation length

[15], z(n) is employed to �nd a more accurate estimate of !0:

!̂0 = argmax
!
fPz(!)g (16)

4. Repeat steps 2 and 3 for a few times until convergence. In the simulation examples in Section V,

at most �ve iterations are required for the parameters to converge.

The delay variance of the proposed method in the case of unknown frequency is derived as (Appendix

II)

var(D̂) = min

(
�
2

3!20
;

1

!20NSNR1

+
3D2

!20N(N2
� 1)SNR1

)
(17)

Notice that the di�erence between (17) and (11) is negligible particularly for su�ciently large N .

IV. Derivation of Performance Bounds

We �rst derive the CRLB of the delay estimate for known !0. The key is to group !0 and D as

one variable, say, � = !0D, and combine r1(n) and r2(n) to form a 2N -length sequence fw(n)g =

fr1(0); � � � ; r1(N � 1); r2(0); � � � ; r2(N � 1)g. The probability density function (PDF) of w(n) is given

by [11]

p(w; �) =
1

�2N�4Nq

exp

(
�

1

�2q

 
N�1X
n=0

jr1(n)�Ae
j(!0n+�)

j
2 +

N�1X
n=0

jr2(n)�Ae
j(!0n��+�)

j
2

!)
(18)

where � = [A; �; �] is the unknown parameter vector to be estimated. The 3 � 3 Fisher information

matrix has the form [10]

I(�) =

2
66666664

�E

�
@
2 ln p(w; �)

@A2

�
�E

�
@
2 ln p(w; �)

@A@�

�
�E

�
@
2 ln p(w; �)

@A@�

�

�E

�
@
2 ln p(w; �)

@�@A

�
�E

�
@
2 ln p(w; �)

@�2

�
�E

�
@
2 ln p(w; �)

@�@�

�

�E

�
@
2 ln p(w; �)

@�@A

�
�E

�
@
2 ln p(w; �)

@�@�

�
�E

�
@
2 ln p(w; �)

@�2

�

3
77777775

(19)

It is clear that the matrix is symmetric since the order of partial di�erentiation can be interchanged.

The log-likelihood function is

ln p(w; �) = � ln(�2N�4Nq )�
1

�2q

"
N�1X
n=0

(jr1(n)j
2 + jr2(n)j

2 + 2A2
� r1(n)Ae

�j(!0n��+�)
�

r
�

1(n)Ae
j(!0n+�)

� r2(n)Ae
�j(!0n��+�)

� r
�

2(n)Ae
j(!0n��+�))

#
(20)
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The derivatives are easily found as

E

(
@
2 ln p(w; �)

@A2

)
= �

4N

�2
q

(21)

E

(
@
2 ln p(w; �)

@�2

)
= �

4NA
2

�2
q

(22)

E

(
@
2 ln p(w; �)

@�2

)
= �

2NA
2

�2
q

(23)

E

(
@
2 ln p(w; �)

@�@�

)
=

2NA
2

�2
q

(24)

E

(
@
2 ln p(w; �)

@A@�

)
= E

(
@
2 ln p(w; �)

@A@�

)
= 0 (25)

The CRLB for �, CRLB(�), is obtained from the inverse of I(�) [10] and has the expression

CRLB(�) =
1

NSNR1

(26)

Using [14] and (26), the CRLB for D, denoted by CRLB(D), is evaluated as

CRLB(D) =
1

!
2
0NSNR1

(27)

Assuming the delay is uniformly distributed between ��=!0 and �=!0, the composite bound for the

delay is identical to (11) which means that the proposed method provides the optimal delay estimation

performance for sinusoidal signals with known frequency and constant envelope.

In the case of unknown frequency, the parameter vector will become � = [A; �; �; !0] and the size of

the corresponding Fisher information matrix is 4� 4. The following partial derivatives are needed and

they are calculated straightforwardly as

E

(
@
2 ln p(w; �)

@!
2
0

)
= �

2A2
N(N � 1)(2N � 1)

3�2
q

(28)

E

(
@
2 ln p(w; �)

@!0@A

)
= 0 (29)

E

(
@
2 ln p(w; �)

@!0@�

)
= �

2A2
N(N � 1)

�2q

(30)

E

(
@
2 ln p(w; �)

@!0@�

)
= �

A
2
N(N � 1)

�2q

(31)

6

This paper is a postprint of a paper submitted to and accepted for publication in IEE Proceedings - Radar, 
 Sonar and Navigation and is subject to Institution of Engineering and Technology Copyright.  
The copy of record is available at IET Digital Library.



Using (21)-(25) and (28)-(31), the CRLBs for !0 and � are computed as

CRLB(!0) =
3

N(N2
� 1)SNR1

(32)

and

CRLB(�) =
1

NSNR1

(33)

The CRLB for D is only dependent on CRLB(!0) and CRLB(�) [14] and can be shown to be

CRLB(D) =
1

!20NSNR1

+
3D2

!20N(N2
� 1)SNR1

(34)

As a result, the composite performance bound is identical to (17) and thus the proposed method also

gives the minimum delay variance for the unknown frequency case.

When the source signal is a gated sinusoid, that is, a(n) = A for n = 0; 1; � � � ; L � 1 and equals

0 otherwise, it can be shown in a similar way that the performance bounds of the delay estimate are

given by (11) and (17) for known and unknown !0, respectively, with the substitution of L = N .

V. Simulation Results

Extensive computer simulations had been done to corroborate the theoretical derivations and to eval-

uate the performance of the proposed approach for estimating the time delay between sinusoidal sig-

nals. The mean square delay errors (MSFEs) for the cases of known/unknown frequencies and con-

stant/rectangular envelopes were investigated. The tone parameters A and � were assigned to be 1 and

0.1, respectively, while the time delay was set to 0.6s. Di�erent SNR1s were produced by properly scal-

ing the noise variance. Unless stated otherwise, the sinusoidal frequency !0 and the observation length

N had values of 0:345� rad/s and 32, respectively. Five iterations of (14) and (16) were used when the

value of !0 was not available. All simulation results provided were averages of 1000 independent runs.

Figure 1 shows the MSFEs of the proposed method for a constant envelope sinusoid with known

frequency at di�erent N versus SNR1. It is seen that except in the no information region, the MSFE

decreased as the observation interval increased. Furthermore, the delay variances agreed with the theo-

retical values very well particularly for SNR1 � �5dB for all cases. The delay estimation performances

using the sinusoidal signal at di�erent known frequencies are compared in Figure 2. We observe that

the MSFEs decreased as the frequency increased and they were close to the corresponding performance

bounds. Figure 3 illustrates the MSFEs when the source signal was a gated sinusoid with di�erent

lengths of the rectangular envelope. As expected, the accuracy of D̂ increased with L. In addition,

it can be seen that MSFEs were above the performance bounds by approximately 1.31dB and 3.27dB

at L = 0:75N and L = 0:5N for SNR1 � �5dB, respectively. This implies that the optimality of the

proposed method will degrade as the width of the signal envelope decreases.
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The variances of D̂ when s(n) was a pure sinusoid with unknown !0 are plotted in Figure 4. It

is observed that the proposed method met the performance bound and performed very similar to the

known frequency case for SNR1 � �4dB. Below the threshold SNR of �4dB, the MSFEs became much

larger than the composite bound which was due to the occurrence of anomalous !̂0 in the nonlinear

frequency estimation process [15]. The test of Figure 3 was repeated for unknown !0 and the results

are shown in Figure 5. We see that the MSFEs were close to those of Figure 3 when the SNRs were

greater than the threshold SNRs of �4dB, �3dB and �1dB for L = N , L = 0:75N and L = 0:5N ,

respectively.

VI. Conclusions

An DTFT based method has been derived for estimating the time di�erence of arrival between sinusoidal

signals received at two separated sensors. When the tone frequency is available, the delay estimate is

given by the phase di�erence of the DTFTs of the received signals over the frequency. An iterative

delay estimation procedure using the periodogram is also developed for the case of unknown frequency.

It is proved that the variances of the delay estimates can meet the performance bounds for known and

unknown frequencies when the sinusoid has a constant envelope. Numerical examples are included to

validate the theoretical analysis and to demonstrate the e�ectiveness of the proposed approach.

Appendix I

The derivation of (11) is given as follows. First, the real and imaginary parts of R1(!0)R
�

2(!0) are of

the forms

<fR1(!0)R
�

2(!0)g = N
2
A
2 cos(!0D) +NA cos(�)3 +NA cos(�� !0D)1 +NA sin(�)4

+NA sin(�� !0D)2 + 13 + 24

and

=fR1(!0)R
�

2(!0)g = N
2
A
2 sin(!0D)�NA cos(�)4 �NA sin(�� !0D)1 +NA sin(�)3

+NA cos(�� !0D)2 � 14 + 23

Let 	 = =fR1(!0)R
�

2(!0)g=<fR1(!0)R
�

2(!0)g and noting that 6 fR1(!0)R
�

2(!0)g = tan�1(	), the

partial derivative of D̂ with respect to 1 at i = Efig = 0, i = 1; 2; 3; 4, is then computed as

@D̂

@1

�����
i=0

=
1

!0
�

@ tan�1(	)

@	

�����
i=0

�

@	

@1

����
i=0

=
1

!0
�

1

1 + tan2(!0D)
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�

N
2
A
2 cos(!0D) � �NA sin(�� !0D)�N

2
A
2 sin(!0D) �NA cos(�� !0D)

(N2A2 cos(!0D))2

= �

sin(�)

NA!0
(A:1)

Similarly, the partial derivative of D̂ with respect to 2, 3 and 4 can be shown to be

@D̂

@2

�����
i=0

=
cos(�)

NA!0
(A:2)

@D̂

@3

�����
i=0

=
sin(�� !0D)

NA!0
(A:3)

and
@D̂

@4

�����
i=0

= �

cos(�� !0D)

NA!0

(A:4)

From (A.1)-(A.4) and (10) with the use of Ef2
i
g = N�

2
q
=2 for i = 1; 2; 3; 4, we have

var(D̂) =
1

!0NSNR1

(A:5)

Assuming that D is uniformly distributed in (��=!0; �=!0) and combining (A.5) yield the composite

bound for the variance of D̂

var(D̂) = min

(
�
2

3!20
;

1

!20NSNR1

)

which is (11).

Appendix II

The variance of D̂ for unknown !0 is derived as follows. Let the steady state frequency estimate of (16)

be !̂0 = !0+5 where 5 is the zero-mean estimation error of !0 and f(5) = sin(5(N�1)=2)= sin(5=2).

It has been revealed that the variance of !̂0 or Ef
2
5g is equal to CRLB(!0) of (32). In this case, var(D̂)

is fully due to 1, 2, 3, 4 and 5. Following Appendix I, the real and imaginary parts of R1(!̂0)R
�

2(!̂0)

are evaluated as

<fR1(!̂0)R
�

2(!̂0)g = A
2 cos(!0D)f2(5) + A cos

�
�+

5(N � 1)

2

�
f(5)3

+A cos

�
�� !0D +

5(N � 1)

2

�
f(5)1 +A sin

�
�+

5(N � 1)

2

�
f(5)4

+A sin

�
�� !0D +

5(N � 1)

2

�
f(5)2 + 13 + 24

and

=fR1(!̂0)R
�

2(!̂0)g = A
2 sin(!0D)f2(5)�A cos

�
�+

5(N � 1)

2

�
f(5)4

�A sin

�
�� !0D +

5(N � 1)

2

�
f(5)1 + A sin

�
� +

5(N � 1)

2

�
f(5)3

+A cos

�
�� !0D +

5(N � 1)

2

�
f(5)2 � 14 + 23
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Denote 	̂ = =fR1(!̂0)R
�

2(!̂0)g=<fR1(!̂0)R
�

2(!̂0)g. It can be shown that the partial derivatives of D̂

with respect to 1, 2, 3 and 4 at i = 0 for i = 1; 2; � � � ; 5, are given by (A.1) to (A.4), respectively,

while
@D̂

@5

�����
i=0

= �

D

!0
(A:6)

The variance of D̂ is then computed as

var(D̂) =
5X
i=1

0
@ @D̂

@i

�����
i=0

1
A
2

Ef
2
i
g

=
1

!
2
0NSNR1

+
3D2

!
2
0N(N2

� 1)SNR1

Combining the results, we obtain the composite delay variance which is equal to (17), with the assump-

tion that D is uniformly distributed in (��=!0; �=!0).
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Figure Captions

Figure 1: Mean square delay errors of a pure sinusoid with known !0 = 0:345� for di�erent observation

intervals N

Figure 2: Mean square delay errors of a pure sinusoid with known frequency for di�erent !0 at N = 32

Figure 3: Mean square delay errors of a gated sinusoid with known !0 = 0:345� for di�erent rectangular

envelopes

Figure 4: Mean square delay errors of a pure sinusoid with unknown !0 = 0:345� at N = 32

Figure 5: Mean square delay errors of a gated sinusoid with unknown !0 = 0:345� for di�erent rectan-

gular envelopes
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