Analysis and Architecture Design of EBCOT for JPEG-2000
Kuan-Fu Chen, Chung-Jr Lian and Hong-Hui Chen, Liang-Gee Chen

Department of Electrical Engineering, National Taiwan University
1, Sec.4, Roosevelt Road, Taipei 106, Taiwan

ABSTRACT

This paper presents detailed analysis and efficient architecture
design of Embedded Block Coding with Optimized Truncation
(EBCOT) for JPEG-2000. Detailed profile of the context formation
process in EBCOT is analyzed to get an insight into the character-
istics of the operation. Column-based operation is adopted to
enable higher process speed. Two speed-up methods, referred to as
Pixel Skipping (PS), and Group-Of-Column Skipping (GOCS), are
proposed. It is shown that over 60% of processing time can be
reduced by exploiting the two methods. A column-based architec-
ture using these combined speed-up ideas is then proposed.

1. INTRODUCTION

JPEG-2000 [1][2][3] is an emerging standard for still image com-
pression. It not only has better compression performance than the
existing JPEG [7] standard but also provides new features not
available in JPEG. JPEG-2000 is composed of two parts: Discrete
Wavelet Transform (DWT) and EBCOT, as shown in Fig. 1.
Wavelet transform is a subband transform, and it transfers images
from spatial domain to frequency domain. The generated coeffi-
cients are then scalar quantized and entropy coded by EBCOT.

1 JPEG2000 ———EBCOT|.
Wavelet ;_’: Quan- |

Transform | | tization [} _'

Fig. 1. JPEG-2000 block diagram

EBCOT coding algorithm is proposed by David Taubman [4][5]
[6]. 1t contains two parts, tier-1 and tier-2, as shown in Fig. 1. Tier-
1 is a complete context-based arithmetic encoder. It divides quan-
tized subbands composed of wavelet coefficients into code blocks,
and encodes code blocks into independent embedded bit-streams.
Tier-2 orders the bit-streams into final JPEG-2000 format bit-
stream according to rate-distortion values calculated by tier-1 and
features specified by user. As we can see in the run time profile of
JPEG-2000 in Table 1, the great part of computation load is on tier-
1 coder.

In this paper, we aim our focus and analysis on Tier-1 coder and
propose architecture for this part. Our analysis of EBCOT is
presented in Section 2, which details profiles and analysis of the
EBCOT Tier-1 coder. Two speed-up methods are proposed ac-
cording to the analysis results. The proposed architecture exploit-
ing these speed-up ideas is described in Section 3. Experiment
results on different images are given in Section 4. A short conclu-
sion is given in Section 5.

0-7803-6685-9/01/$10.0002001 IEEE

Table L. Run time profile for JPEG-2000 (Image 1792x1200,
5 level wavelet decomposition, 1 layer, profile at PIII-733
128M RAM, Visual C++ 6.0 and Windows ME)

. Single Component 3 Components(RGB)
Operation Lossless Lossy Lossless Lossy
intercomponent transform 0.91 14.12
intracomponent transform 10.81 26.38 11.9 23.97
quantization 6.42 5.04
EBCOT Tier 1 71.63 52.26 69.29 43.85
pass 1 14.89 14.82 13.9 12.39
pass 2 10.85 7 10.94 5.63
pass 3 26.14 16.09 25.12 13.77
arithmetic encoder 19.75 14.35 19.33 12.06
EBCOT Tier 2 17.56 14.95 17.9 13.01
layer formation 10 9.52 9.94 7.95
marker insertion 7.56 5.43 7.96 - 5.06

2. EBCOT ALGORITHM AND ANALYSIS

Tier-1 of EBCOT utilizes context-based arithmetic coding method
to encode each code block into independent embedded bit-stream.
Tier-1 coder can be viewed as two parts: Context Formation (CF)
and Arithmetic Encoder (AE). CF scans all pixels in code block in
a specific order, and generates corresponding contexts for each bit.
AE encodes the code block data according to their contexts.
EBCOT encodes the quantized wavelet coefficients bitplane by
bitplane from MSB to LSB. Every 4 rows in a bitplane are called a
“stripe,” and each pass in every bitplane scans in order stripe by
stripe. Then in every stripe, data are scanned column by column.
Every column is composed of 4 bits. So the scanning hierarchy of a
code block is bitplane, pass, stripe, column, bit, as shown in Fig. 2.

T —
11—

Fig. 2. Scanning order of context formation in every pass

e Imeue Widty ———f

l PixcisI

Contexts for all bits are generated according to their neighbors
using four coding methods. Before CF, the quantized wavelet
coefficients are separated into sign and magnitude (in 1's compli-
ment). A pixel is called “significant” after the first ‘1" bit is met
while encoding magnitude part from MSB to LSB, and “insignifi-
cant” before the first *1° bit appears. The context of each bit is
determined by significant situations of its neighbors. There are four
coding methods to generate context for each bit in a code block:
Zero Coding, Run-Length Coding, Sign Coding, and Magnitude
Refinement.

1I-765

Every bitplane is encoded using 3 passes in turn. Each pixel in a
bitplane is encoded in one of 3 passes. Pass 1 is “Significant
Propagation Pass.” Pixels having at least one significant neighbor

are coded in this pass. Pass 2 is “Magnitude-Refinement Pass.” All

significant pixels are coded in this pass. Pass 3 is “Clean-Up Pass.”
Pixels not coded in first two passes are coded in this pass. While
coding a bitplane, every pixel is checked once in all 3 passes to
determine if this pixel should be coded. In Taubman's architecture,
a straightforward method is used. Every single bit is checked and
(or) coded in all 3 passes, which cost total 3 clocks. Coding a
64x64 code block with 8-bit precision will take 64x64x8x3 clocks.
That makes tier-1 coder become bottleneck of JPEG-2000 system
design.

Become
Significant

Neighbor
Become Significant

Become
Significant

Fig. 3. Evolution Map: higher bitplanes to lower bitplanes

According to the characteristic of the context formation process,
great improvement on process time can be achieved. Every pixel is
insignificant at the beginning of coding first bitplane (Most Sig-
nificant Bitplane), so all pixels are coded in pass 3. As we coding
toward lower bitplanes, some pixels become significant. They will
be coded in pass 2, and their insignificant neighbors will be coded
in pass 1, as shown in Fig. 3.

Pixel No.

- TO-~ - . 5 Bitplane
No.

Fig. 4. Pixel distribution in 3 passes

The characteristic of the context formation process makes the
distribution of pixels in 3 passes vary greatly from bitplane to
bitplane. A real case is analyzed and the result is shown in Fig. 4.
It is an 8x8 LL subband (lowest frequency subband) from 256x256
Lena image with 5-level wavelet decomposition. In highest bit-
plane (MSB), all pixels are coded in pass 3. However, in lower
bitplane (near LSB), most pixels are coded in pass 2, only few
pixels are coded in pass 1, and non in pass 3. The number of pixels
coded in pass | increases at the beginning, and then decreases
because more and more pixels coded in pass | become significant.
Every pass spends the same time in the architecture in [3], but
some passes do not even encode a single pixel (such as pass 3 in
bitplane 0~3). We make a great improvement on process time
utilize distribution variation feature, and will be discussed later.

2.1 Column-Based Operation

Higher speed and data reuse can be achieved via column-based
operation. In Taubman’s architecture [3], data are supplied to
context formation element one pixel at a time. We speed-up con-
text formation by processing more than one pixel every clock. In
the proposed architecture, column-based operation is adopted
instead of pixel-based operation. Data are supplied to context
formation element one column (four pixels) at a time. There are
two advantages of column-based operation: 1) pixels in a column
can be checked simultaneously, so speed-up methods proposed can
be applied. 2) Higher data reuse in significant and sign state vari-
ables. Memory access frequency of these state variables can be
reduced.

2.2 Two Speed-Up Methods

Table II. Columns classified by number of NBC pixels con-
tained (Baboon, 512x512, 5-level wavelet, code block 64x64)

NBC || number of column in each pass
pixel no|i pass1 | Pass2 | Pass3 Sum
0 181076| 159223258328|598627|47.85%
1 72650 | 47663 | 14437 |134750110.77%
2 60921 | 49313 | 10532 | 120766] 9.65%
3 51098 | 63132 6568 |120798| 9.66%
4 29391 | 75805 {170807|276003|22.06%

In every bitplane, each pixel is coded in one of 3 passes, so one
column in every pass may contain 0~4 Need-to-Be-Coded (NBC)
pixels. Table II shows the analysis results of column-based opera-
tion. Columns are classified in every pass according to number of
NBC pixels in them. For example, there are 181076 columns
contain zero NBC pixels in pass 1, 159223 columns in pass 2, and
258328 columns in pass 3. There are in total 598627 (47%) col-
umns contain 0 NBC pixels. The percentage of columns having
four NBC pixels (which means no processing time is wasted in
Taubman’s architecture [3]) is only 22.06%. According to Taub-
man’s architecture, coding a column costs 4 clocks no matter how
many NBC pixels are in it. The key ideas to improve the process
speed are: (1)skip no-operation pixels, and (2)skip no-operation
columns (columns with zero NBC pixel). These ideas are described
below:

1) Pixel Skipping (PS): PS is designed for all 3 passes,
which skips no-operation pixels in a column. By column-based
coding, pixels in a column can be parallel checked to see if they
are NBC pixels. Only NBC pixels are processed, other no-
operation pixels are skipped. If there are n NBC pixels in a col-
umn(0 <n<4), only n clocks will be spent on coding these NBC
pixels, and 4-n clocks are saved. Since most columns have less
than 4 NBC pixels, this method can improve system process
speed greatly, as the experimental results shown in Sec. 4.

2) Group-Of-Column Skipping (GOCS) : GOCS skips a
group of no-operation columns together in pass 2 and pass 3. By
using PS speed-up methods, every no-operation column will cost
only 1 clock for checking. To further improve process speed,
these no-operation columns should be skipped. Due to the prop-
erty of wavelet transform, spatial correlation between wavelet

I1-766

coefficients is strong, so no-operation columns usually group
together. We choose every 8 consecutive columns as a GOC. If
there is no any column in this GOC to be a NBC column, this
GOC is directly skipped, which can save 31 clocks compare to
Taubman’s design. GOCS can only applied on pass 2 and pass 3,
because of the significant propagation in pass 1. So regular cod-
ing is applied to pass 1, that is, columns are checked one by one.
After coding pass 1, all NBC columns of pass 2 and pass 3 are
decided. The GOCs that contain NBC columns are recorded.
While encoding pass 2 and pass 3, only those GOCs contain
NBC columns are processed and all no-operation GOCs are
skipped.

Every single method can improve processing speed, and each can
be used together or separately. The percentage of improvement is
given in Section 4.

3. ARCHITECTURE

An efficient column-based context formation architecture for tier-1
coder is described in this Section. The key ideas are based on the
column-based operation and two speed-up methods described
above.

3.1 System
—_—— e —— — — — = = —— —q
| H.V.D |
Significant Zero
I Coding PE I
State State Final
I variable Variable gg;;;l I
I Memories PE Magnitude Sign
| |Refinement| | coging PE | context
1=~ Pass 3 | (ToAE)
h che?“ify pe——mm—————! [Run-Length| [Control | oee
L2 Coding PE
H.V I
f | Contribution
Code Sign Magnitude Pass 2 I
Block { Magnitude Refinement —I | Control
Memory PE |value | PE |

Fig. 5. Tier-1 context formation system block diagram

In Fig.5, code block memory stores the whole block data in a sign
and magnitude separation manner. State Variable Memorics are
used for storing three different kinds of state variables (significant,
magnitude refinement, final) necessary for context formation.
These state variables corresponding to current coding column are
then sent to State Variable PE. After some operation in Srate
Variable PE, variables needed for 4 coding PE are generated. Sign
Magnitde PE works similar to State Variable PE. Four coding
PE's can generate contexts according to the state variables, sign and
magnitude. Three Pass Controllers control four coding PEs and
select the output contexts.

3.2 Column-Based Operation

The key point to applying column-based operation is to solve
memory arrangement and access for significant and sign variables.
For coding a single bit, we need 9 significant state variables and 9
sign variables (variables of self pixel and 8 neighboring pixels). In
a column-based design, 18 significant and ‘sign variables are
needed at the same time, including current and two neighboring

columns, 6 bits each, as shown in Fig. 6. Since variables from
neighboring stripes are needed, it is quite a challenge to arrange
and access memory. For example, if significant state variables are
stored in a memory, 1 column within a stripe (4 bits) as a word,
then every time a new column is processed, 3 words must be
loaded from memory, which will take 3 clocks. Besides, more than
needed data are loaded. Only 6 more variables are needed for
coding a new column, but 12 variables are accessed.

This problem can be solved by using three smaller memories, and
set 2 bits as a word. As shown in Fig. 6, variables of different row
are interleaving placed in 3 memories (A, B, C, B, A, B....). By
this arrangement, variables needed for processing a new column
can be accessed at the same time. In a situation of continuous
coding, after finish coding one column, we just shift the significant
state variables in register array to left, and load one new column
into right side of this array.

D From Memory A
C -
Cocing Pixes

From Memory B

Neigmoring
Pixcis

Frox Mcemory C

Fig. 6. Significant and sign variable registers

Fig. 7 is the architecture for significant state variables PE. It can
provide not only the significant state variables needed, but also the
sum of significant neighbors of each pixel in current coding col-
umn simultaneously. The architecture for sign variables PE are
similar to Fig. 7, except one small converting circuit is used in-
stead of these adders. The converting circuit converts sign vari-
ables of neighboring pixels into H,V contributions needed by Sign
Coding PE.

ne o NN,
v - gﬂ—m - ¢ ﬁg 7 e
V3 2 @ED N 9 3 2 s
V4 2 @J:g N ® 2" %

NN

Fig. 7. First 3 columns of significant state variable PE

3.3 Pixel Skipping

To implement pixel skipping method, indexes for NBC pixels in
this column must be generated one by one. The architecture for
pixel skipping is shown in Fig. 8. A 4-bit bus indicates if pixels in

11-767

current coding column are NBC pixels or not. The pixel accumula-

tor counts the number of pixels (0~3) already coded in this column.

The index of current coding pixel is generated, then the pixel
accumulator is compared with the number of NBC pixels. If all
NBC pixels in this column are coded, a change column signal is
generated. By this architecture, all no-operation pixels can be
skipped with only a little hardware cost.

NBC
Pixels 4,

-+ —

2 o Change

Pixel 1 Column
Accumulator O i

®

— | 0!
G|
o AT
iVl BT
10 r } > NBC
Index
3

Fig. 8. Pixel skipping architecture

3.4 Group-Of-Column Skipping

Group-Of-Column skipping is applied on pass 2 and pass 3. Every
8 consecutive columns are group together as a GOC. All no-
operation GOCs in these two passes can be skipped. Since the
condition (NBC or not) of all GOCs in pass 2 and pass 3 must be
recorded in pass | coding, a memory for storing the conditions of
all GOCs is required. In a general case with code block size 64x64,
a small memory of size 64x4 is needed (128 GOCs for each pass).

3.5 System Specifications

The design for EBCOT tier-1 coder, which includes context forma-
tion and arithmetic encoder, is finished and taped out. Tables III

shows the detail specifications of this design. Note that most of the
memories are necessary for EBCOT algorithm, and only 256-bit

extra memory are required for proposed speed-up method.

Table IIl. Specifications of EBCOT tier-1 coder system

Process Technology 0.35um CMOS 1P4M
Chip Size 3.67x3.67 pm2
21000 gates
Gate Count + 13 kbit r%emory
Clock Frequency 50 MHz
Supply Voltage 3.3V
Power Consumption 115.49
Package 144 CQFP

4. EXPERIMENT RESULTS

Experiments are made on encoding various images with proposed
architecture and Taubman’s [3] for comparison. The processing
time of context formation in tier-1 coder is shown in Table IV. It is
clear that the performance improved dramatically, with more than
60% of improvement in all cases. A detail result that shows the
processing time of every passes is shown in Fig. 9. In the circum-
stances that only PS is applied, the processing time is reduced to

43% compared with Taubman’s architecture. By using PS+GOCS,
processing time can be further reduced to 37%.

Image | Filterj Taubman Proposed Percentage
Lena 9_/7” 3,642,998 1 .368,909 37.58%
-5/3}3,668:107 . 1i381:659 - |- 37.67%
9/7 | 4,609,969 1,791,967 38.87%
Baboon | o3 | T4560.831_ 1 1782725 | 39.01% _
Face 9/7 | 3,679,649 1’356)57? 36.87%
5/3+] 3,680,359 :+::1;358:734' :36.92%"
Bike 9/7 | 4,120,093 1,515,449 _ '36.78%‘
-5/3:1°4:114,038 - 4,518,937 || :36:92%. "

Table IV. Experimental results for processing time of pro-
posed architecture compared with David Taubman's, on 4
different images with size 512x512, 2 kinds of filters

Pass1 Pass2 Pass3
Taubman's 130 I 130 I * 101 | 364 x10k cycles

7

Y -
Ps | 56 | 49 | 54 | 158 x10k cycles (43.4%)

f /

i /
/

Cs+Ps [56 [38]44 | 137 x10k cycles (37.6%)

Fig. 9. Experimental results on detail processing time of
every passes, with image ‘Lena’ and 9/7 filter

5. CONCLUSIONS

In this paper, analysis and architecture design of tier-1 coder of
EBCOT for JPEG-2000 is presented. Column-based coding archi-
tecture with two speed-up methods, Pixel Skipping, and Group-Of-
Column Skipping are proposed according to the characteristic of
EBCOT algorithm. These two methods can improve the efficiency
of the implementation to more than 60%.

6. REFERENCES

[1] JPEG-2000 Part I Final Committee Draft Version 1.0,
ISO/IEC JTC1/SC29/WGI1 N1646R.

[2] M. D. Adams, F. Kossentini (UBC),H. Man (SIT), T. Ebra-
himi (EPFL), JPEG-2000: The Next Generation Still Image
Compression Standard, ISO/IEC JTC 1/SC 29/WG IN1734.

[3] C. Christopoulos, MediaLab, Ericsson Research, Sweden,
JPEG-2000 Verification Model 7.0 (Technical description),
ISO/IEC JTC 1/SC 29/WG | N 1684, Apr. 2000.

[4] D. Taubman, EBCOT: Embedded Block Coding with Opti-
mized Truncation, ISO/IEC JTC1/SC29/WG1 N1020R.

[5] D. Taubman, High Performance Scalable Image Compression
With EBCOT, Proc. of IEEE International Conference on Im-
age Processing, Kobe, Japan. 1999, vol. 3, pp. 344-348.

[6] D. Taubman, Embedded Block Coding in JPEG-2000, Proc.
of IEEE International Conference on Image Processing, Van-
couver, Canada, 2000, vol. 2, pp. 33-36.

[7] W. Pennebaker and J. Mitchell, JPEG Still Image Compres-
sion Standard, New York: Van Nostrand Reinhold, 1993.

II-768

