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This paper presents detailed analysis and efficient architecture 
design of Embedded Block Coding with Optimized Truncation 
(EBCOT) for PEG-2000. Detailed profile of the context formation 
process in EBCOT is analyzed to get an insight into the character- 
istics of the operation. Column-based operation is adopted to 
enable higher process speed. Two speed-up methods, referred to as 
Pixel Skipping (PS), and Group-Of-Column Skipping (GOCS), are 
proposed. It is shown that over 60% of processing time can be 
reduced by exploiting the two methods. A column-based architec- 
ture using these combined speed-up ideas is then proposed. 
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1. INTRODUCTION 
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PEG-2000 [ 1][2][3] is an emerging standard for still image com- 
pression. It not only has better compression perfonnance than the 
existing P E G  [7] standard but also provides new features not 
available in PEG.  PEG-2000 is composed of two parts: Discrete 
Wavelet Transfonn (DWT) and EBCOT, as shown in Fig. 1. 
Wavelet transform is a subband transfonn, and it transfers images 
from spatial domain to frequency domain. The generated coeffi- 
cients are then scalar quantized and entropy coded by EBCOT. 
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Fig. 1. PEG-2000 block diagram 

EBCOT coding algorithm is proposed by David Taubman [4][5] 
[6]. It contains two parts, tier-I and tier-2, as shown in Fig. 1. Tier- 
1 is a complete context-based arithmetic encoder. It divides quan- 
tized subbands composed of wavelet coefficients into code blocks, 
and encodes code blocks into independent embedded bit-streams. 
Tier-2 orders the bit-streams into final JPEG-2000 format bit- 
stream according to rate-distortion values calculated by tier-1 and 
features specified by user. As we can see in the run time profile of 
JPEG-2000 in Table I, the great part of computation load is on tier- 
1 coder. 

In this paper, we aim our focus and analysis on Tier-I coder and 
propose architecture for this part. Our analysis of EBCOT is 
presented in Section 2, which details profiles and analysis of the 
EBCOT Tier-1 coder. Two speed-up methods are proposed ac- 
cording to the analysis results. The proposed architecture exploit- 
ing these speed-up ideas is described in Section 3. Experiment 
results on different images are given in Section 4. A short conclu- 
sion is given in Section 5 .  

Table I. Run time profile for PEG-2000 (Image 1792x1200, 
5 level wavelet decomposition, 1 layer, profile at PIII-733 
128M RAM, Visual C t t  6.0 and Windows ME) 

Operation 

Intercomponent transfonn 
lntracomponent transfonn 
quantization 
EBCOT Tier 1 

pass 1 
pass 2 
pass 3 
arithmetic encoder 

layer formation 
marker insertion 

EBCOT Tier 2 

Single Component I 3 Components(RG0) 
Lossless I LOSSY 1 Lossless 1 LOSSY 

I I 0.91 I 14.12 

2. EBCOT ALGORITHM AND ANALYSIS 
Tier- 1 of EBCOT utilizes context-based. arithmetic coding method 
to encode each code block into independent embedded bit-stream. 
Tier-1 coder can be viewed as two parts: Context Formation (CF) 
and Arithmetic Encoder (AE). CF scans all pixels in code block in 
a specific order, and generates corresponding contexts for each bit. 
AE encodes the code block data according to their. contexts. 
EBCOT encodes the quantized wavelet coeficients bitplane by 
bitplane from MSB to LSB. Eveiy 4 rows in a bitplane are called a 
“stripe,” and each pass in every bitplane scans in order stripe by 
stripe. Then in every stripe, data are scanned column by coluinn. 
Every column is composed of 4 bits. So the scanning hierarchy of a 
code block is bitplane, pass, stripe, column, bit, as shown in Fig. 2. 
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Fig. 2. Scanning order of context formation in every pass 

Contexts for all bits are generated according to their neighbors 
using four coding methods. Before CF, the quantized wavelet 
coefficients are separated into sign and magnitude ( in  1‘s compli- 
ment). A pixel is called “significant” after the first ‘ 1 ‘  bit is met 
while encoding magnitude part from MSB to LSB, and “insignifi- 
cant” before the first ‘ 1 ’  bit appears. The context of each bit is 
determined by significant situations of its neighbors. There are four 
coding methods to generate context for each bit in a code block: 
Zero Coding, Run-Length Coding, Sign Coding, and Magnitude 
Refinement. 
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Every bitplane is encoded using 3 passes in turn. Each pixel in a 
bitplane is encoded in one of 3 passes. Pass 1 is “Significant 
Propagation Pass.” Pixels having at least one significant neighbor 
are coded in this pass. Pass 2 is “Magnitude-Refinement Pass.” All 
significant pixels are coded in this pass. Pass 3 is “Clean-up Pass.” 
Pixels not coded in first two passes are coded in this pass. While 
coding a bitplane, every pixel is checked once in all 3 passes to 
detennine if this pixel should be coded. In Taubman’s architecture, 
a straightforward method is used. Every single bit is checked and 
(or) coded in all 3 passes, which cost total 3 clocks. Coding a 
64x64 code block with 8-bit precision will take 6 4 x 6 4 ~ 8 ~ 3  clocks. 
That makes tier- 1 coder become bottleneck of PEG-2000 system 
design. 

6-e Significant 

Become 
Significant 

Neighbor 

Fig. 3. Evolution Map: higher bitplanes to lower bitplanes 

According to the characteristic of the context formation process, 
great improvement on process time can be achieved. Every pixel is 
insignificant at the beginning of coding first bitplane (Most Sig- 
nificant Bitplane), so all pixels are coded in pass 3. As we coding 
toward lower bitplanes, some pixels become significant. They will 
be coded in pass 2, and their insignificant neighbors will be coded 
in pass I ,  as shown in Fig. 3. 
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Fig. 4. Pixel distribution in 3 passes 

The characteristic of the context fomiation process makes the 
distribution of pixels in 3 passes vary greatly from bitplane to 
bitplane. A real case is analyzed and the result is shown in Fig. 4. 
It is an 8x8 LL subband (lowest frequency subband) from 256x256 
Lena image with 5-level wavelet decomposition. I n  highest bit- 
plane (MSB), all pixels are coded in pass 3. However. in lower 
bitplane (near LSB), most pixels are coded in pass 7, only few 
pixels are coded in pass I ,  and non in pass 3. The number of pixels 
coded in pass 1 increases at the beginning, and then decreases 
because more and more pixels coded in pass I become significant, 
Every pass spends the same time in the architecture in [3], but 
some passes do not even encode a single pixel (such as pass 3 in 
bitplane 0-3). We make a great improvement on process time 
utilize distribution variation feature. and will be discussed later. 

2.1 Column-Based Operation 

Higher speed and data reuse can be achieved via column-based 
operation. In Taubman’s architecture [3], data are supplied to 
context formation element one pixel at a time. We speed-up con- 
text formation by processing more than one pixel every clock. In 
the proposed architecture, column-based operation is adopted 
instead of pixel-based operation. Data are supplied to context 
formation element one coluinti (four pixels) at a time. There are 
two advantages of column-based operation: 1 )  pixels in a column 
can be checked simultaneously, so speed-up methods proposed can 
be applied. 2) Higher data reuse in significant and sign state vari- 
ables. Memory access frequency of these state variables can be 
reduced. 

2.2 Two Speed-up Meth,ods 

Table 11. Columns classified by number of NBC pixels con- 
tained (Baboon, 5 12x5 12,S-Ievel wavelet, code block 64x64) 

- 
NBC 11 number of column in each Dass I 

I -  

Pass1 1 Pass2 I pass3 I Sum 
1810761 15922312583281 598627147.85% 

- 
In every bitplane, each pixel is coded in one of 3 passes, so one 
column in every pass may contain 0-4 Need-to-Be-Coded (NBC) 
pixels. Table I1 shows the analyijis results of column-based opera- 
tion. Columns are classified in every pass according to number of 
NBC pixels in them. For example, there are I81076 columns 
contain zero NBC pixels in pass 1, 159223 columns in pass 2, and 
258328 columns in pass 3. There are in total 598627 (47%) col- 
uinns contain 0 NBC pixels. The percentage of coluinns having 
four NBC pixels (which means no processing time is wasted in 
Taubman’s architecture [3]) is only 22.06%. According to Taub- 
man’s architecture, coding a column costs 4 clocks no matter how 
many NBC pixels are in it. The key ideas to improve the process 
speed are: ( 1 )skip no-operation pixels, and (2)skip no-operation 
coluinns (columns with zero NBC pixel). These ideas are described 
below: 

1) Pixel Skipping (PS): PS is designed for all 3 passes, 
which skips no-operation pixels in a colunm. By column-based 
coding, pixels in a column can be parallel checked to see if they 
are NBC pixels. Only NBC pixels are processed, other no- 
operation pixels are skipped. If there are n NBC pixels in a col- 
umn(0 -< n -: 4), only n clocks will be spent on coding these NJ3C 
pixels, and 4-11 clocks are saved. Since most columns have less 
than 4 NBC pixels, this method can improve system process 
speed greatly, as the experimental results shown in Sec. 4. 

2) Group-Of-Column Skipping (GOCS) : GOCS skips a 
group of no-operation columns together in pass 2 and pass 3. By 
using PS speed-up methods, every no-operation colu~nn will cost 
only 1 clock for checking. To further improve process speed, 
these no-operation coluinns should be skipped. Due to the prop- 
erty of wavelet transfonn, spatial correlation between wavelet 
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coefficients is strong, so no-operation columns usually group 
together. We choose every S consecutive columns as a GOC. If 
there is no any column in this GOC to be a NBC column, this 
GOC is directly skipped, which can save 31 clocks compare to 
Taubman's design. GOCS can only applied on pass 2 and pass 3, 
because of the significant propagation in pass 1. So regular cod- 
ing is applied to pass 1, that is, columns are checked one by one. 
After coding pass 1, all NBC columns of pass 2 and pass 3 are 
decided. The GOCs that contain NBC columns are recorded. 
While encoding pass 2 and pass 3, only those GOCs contain 
NBC columns are processed and all no-operation GOCs are 
skipped. 

Every single method can improve processing speed, and each can 
be used together or separately. The percentage of improvement is 
given in Section 4. 

3. ARCHITECTURE 
An efficient column-based context formation architecture for tier-] 
coder is described in this Section. The key ideas are based on the 
column-based operation and two speed-up methods described 
above. 

Fig. 5. Tier- 1 context formation system block diagram 

I n  Fig.5. code block nzerlior?~ stores the whole block data in a sign 
and magnitude separation manner. Starc I'ariablc Me/norics are 
used for storing three different kinds of state variables (significant, 
magnitude refinement, final) necessary for context formation. 
These state variables corresponding to current coding column are 
then sent to Stote Var-ioble PE. After some operation in State 
C'rri-iob/e PE, variables needed for 4 coding PE are generated. Sign 
Mogiiitirclc PE works similar to Stare Variable PE. Four coding 
PES can generate contexts according to the state variables, sign and 
magnitude. Three Pass Colitrollers control four codirig PES and 
select the output contexts. 

3.2 Column-Based Operation 

The key point to applying column-based operation is to solve 
memory airangement and access for significant and sign variables. 
For coding a single bit, we need 9 significant state variables and 9 
sign variables (variables of self pixel and 8 neighboring pixels). I n  
a column-based design, 18 significant and sign variables are 
needed at the same time, including cin'l'eiit and two neighboring 

columns, 6 bits each, as shown in Fig. 6 .  Since variables from 
neighboring stripes are needed, it is quite a challenge to arrange 
and access memory. For example, if significant state variables are 
stored in a memory, 1 column within a stripe (4 bits) as a word, 
then every time a new column is processed, 3 words must be 
loaded from memory, which will take 3 clocks. Besides, more than 
needed data are loaded. Only 6 more variables are needed for 
coding a new column, but 12 variables are accessed. 

This problem can be solved by using three smaller memories, and 
set 2 bits as a word. As shown in Fig. 6,  variables of different row 
are interleaving placed in 3 memories (A, B, C, B, A, B .... ). By 
this arrangement, variables needed for processing a new column 
can be accessed at the same time. In a situation of continuous 
coding, after finish coding one column, we just shift the significant 
state variables in register array to left, and load one new column 
into right side of this array. 

C'..11c:-. 

COL::!! p:xc.s 

Fro::. .Llc::ory .A 

41c::ory B 

41c::ory c 

Fig. 6. Significant and sign variable registers 

Fig. 7 is the architecture for significaizt state variobles PE. It can 
provide not only the significant state variables needed, but also the 
sum of significant neighbors of each pixel in current coding col- 
umn simultaneously. The architecture for sign iiarinbles PE are 
similar to Fig. 7 ,  except one small converting circuit is used in- 
stead of these adders. The converting circuit converts sign vari- 
ables of neighboring pixels into H,V contributions needed by Sign 
Coding PE. 

V I  H I  

v 2  H2 

v 3  H3 

v4 H4 

Fig. 7. First 3 columns of sigrzi'jicaiit state variable PE 

3.3 Pixel Skipping 

To implement pixel skipping method, indexes for NBC pixels in 
this column must be generated one by one. The architecture for 
pixel skipping is shown in Fig. S. A 4-bit bus indicates if pixels in 
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current coding column are NBC pixels or not. The pixel accumula- 
tor counts the number of pixels (0-3) already coded in this column. 
The index of current coding pixel is generated, then the pixel 
accumulator is compared with the number of NBC pixels. If all 
NBC pixels in this column are coded, a change column signal is 
generated. By this architecture, all no-operation pixels can be 
skipped with only a little hardware cost. 

Taubman’s 

NBC 
Pixels 

Pixel 
Accumulator 

130 I 13-1 364 x lOk  cycles 

Fig. 8. Pixel skipping architecture 

3.4 Group-Of-Column Skipping 

Group-Of-Column skipping is applied on pass 2 and pass 3. Every 
8 consecutive columns are group together as a GOC. All no- 
operation GOCs in these two passes can be skipped. Since the 
condition (NBC or not) of all GOCs in pass 2 and pass 3 must be 
recorded in pass 1 coding, a memory for storing the conditions of 
all GOCs is required. I n  a general case with code block size 64x61, 
a small memory of size 64x4 is needed (128 GOCs for each pass). 

3.5 System Specifications 

The design for EBCOT tier-1 coder, which includes context fonna- 
tion and arithmetic encoder, is finished and taped out. Tables I11 
shows the detail specifications of this design. Note that most of the 
memories are necessary for EBCOT algorithm, and only 2S6-bit 
extra memory are required for proposed speed-up method. 

Table 111. Specifications of EBCOT tier-1 coder system 

)Process Technoloav I 0.35um CMOS 1P4M 1 
I, , 

Chip Size I 3.67x3.67 pm2 I 
I 21 000 gates 

+ 13 kbit memory Gate Count 
Clock Freauencv I 50 MHz 

lsupply Voltage I 3.3 v I 
Power Consumption I 11 5.49 
Package I 144 CQFP 

4. EXPERIMENT RESULTS 
Experiments are made on encoding various images with proposed 
architecture and Taubman’s [3] for comparison. The processing 
time ofcontext formation in tier-I coder is shown in Table IV. It is 
clear that the performance improved dramatically, with more than 
60% of improvement in all cases. A detail result that shows the 
processing time of every passes is shown in Fig. 9. In the circum- 
stances that only PS is applied, the processing time is reduced to 

43% compared with Taubman’s architecture. By using PS+GOCS, 
processing time can be fiirther reduced to 37%. 

Table IV. Experimental results for processing time of pro- 
posed architecture compared with David Taubman‘s, on 4 
different images with size 5 12x5 12, 2 kinds of filters 

PS mi, 158;IOk cycles (43 4%) 
I l l i  

CS+PS m l ‘ 1 3 7  xlOk cycles (37.6%) 

Fig. 9. Experimental results on detail processing time of 
every passes, with image ‘Lena’ and 917 filter 

5. CONCLUSIONS 

In this paper, analysis and architecture design of tier-1 coder of 
EBCOT for PEG-2000 is presented. Column-based coding archi- 
tecture with two speed-up methods, Pixel Skipping, and Group-Of- 
Column Skipping are proposed according to the characteristic of 
EBCOT algorithm. These two methods can improve the efficiency 
of the iinpleinentation to more than 60%. 
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