
Analysis and Architecture Design of EBCOT for JPEG-2000
Kiian-Fii Chen, Cluing-Jr Lian and Hong-Hili Chen, Liang-Gee Chen

Department of Electrical Engineering, National Taiwan University
1, Sec.4, Roosevelt Road, Taipei 106, Taiwan

10.81

71.63
14 89
1085
26 14
19 75

17.56

ABSTRACT

26.38 11.9 23.97
6.42 5.04

52.26 69.29 43.85
14 82 13 9 12 39
7 10 94 5 63
16 09 25 12 13 77
14 35 19 33 12 06

14.95 17.9 13.01

This paper presents detailed analysis and efficient architecture
design of Embedded Block Coding with Optimized Truncation
(EBCOT) for PEG-2000. Detailed profile of the context formation
process in EBCOT is analyzed to get an insight into the character-
istics of the operation. Column-based operation is adopted to
enable higher process speed. Two speed-up methods, referred to as
Pixel Skipping (PS), and Group-Of-Column Skipping (GOCS), are
proposed. It is shown that over 60% of processing time can be
reduced by exploiting the two methods. A column-based architec-
ture using these combined speed-up ideas is then proposed.

10
7.56

1. INTRODUCTION

9.52 9.94 7.95
5.43 7.96 . 5.06

PEG-2000 [1][2][3] is an emerging standard for still image com-
pression. It not only has better compression perfonnance than the
existing P E G [7] standard but also provides new features not
available in PEG. PEG-2000 is composed of two parts: Discrete
Wavelet Transfonn (DWT) and EBCOT, as shown in Fig. 1.
Wavelet transform is a subband transfonn, and it transfers images
from spatial domain to frequency domain. The generated coeffi-
cients are then scalar quantized and entropy coded by EBCOT.

, __. , , _.

Fig. 1. PEG-2000 block diagram

EBCOT coding algorithm is proposed by David Taubman [4][5]
[6]. It contains two parts, tier-I and tier-2, as shown in Fig. 1. Tier-
1 is a complete context-based arithmetic encoder. It divides quan-
tized subbands composed of wavelet coefficients into code blocks,
and encodes code blocks into independent embedded bit-streams.
Tier-2 orders the bit-streams into final JPEG-2000 format bit-
stream according to rate-distortion values calculated by tier-1 and
features specified by user. As we can see in the run time profile of
JPEG-2000 in Table I, the great part of computation load is on tier-
1 coder.

In this paper, we aim our focus and analysis on Tier-I coder and
propose architecture for this part. Our analysis of EBCOT is
presented in Section 2, which details profiles and analysis of the
EBCOT Tier-1 coder. Two speed-up methods are proposed ac-
cording to the analysis results. The proposed architecture exploit-
ing these speed-up ideas is described in Section 3. Experiment
results on different images are given in Section 4. A short conclu-
sion is given in Section 5 .

Table I. Run time profile for PEG-2000 (Image 1792x1200,
5 level wavelet decomposition, 1 layer, profile at PIII-733
128M RAM, Visual C t t 6.0 and Windows ME)

Operation

Intercomponent transfonn
lntracomponent transfonn
quantization
EBCOT Tier 1

pass 1
pass 2
pass 3
arithmetic encoder

layer formation
marker insertion

EBCOT Tier 2

Single Component I 3 Components(RG0)
Lossless I LOSSY 1 Lossless 1 LOSSY

I I 0.91 I 14.12

2. EBCOT ALGORITHM AND ANALYSIS
Tier- 1 of EBCOT utilizes context-based. arithmetic coding method
to encode each code block into independent embedded bit-stream.
Tier-1 coder can be viewed as two parts: Context Formation (CF)
and Arithmetic Encoder (AE). CF scans all pixels in code block in
a specific order, and generates corresponding contexts for each bit.
AE encodes the code block data according to their. contexts.
EBCOT encodes the quantized wavelet coeficients bitplane by
bitplane from MSB to LSB. Eveiy 4 rows in a bitplane are called a
“stripe,” and each pass in every bitplane scans in order stripe by
stripe. Then in every stripe, data are scanned column by coluinn.
Every column is composed of 4 bits. So the scanning hierarchy of a
code block is bitplane, pass, stripe, column, bit, as shown in Fig. 2.

Pixci 3
3

Siripc i

s ! I_i pc 2

Fig. 2. Scanning order of context formation in every pass

Contexts for all bits are generated according to their neighbors
using four coding methods. Before CF, the quantized wavelet
coefficients are separated into sign and magnitude (in 1‘s compli-
ment). A pixel is called “significant” after the first ‘ 1 ‘ bit is met
while encoding magnitude part from MSB to LSB, and “insignifi-
cant” before the first ‘ 1 ’ bit appears. The context of each bit is
determined by significant situations of its neighbors. There are four
coding methods to generate context for each bit in a code block:
Zero Coding, Run-Length Coding, Sign Coding, and Magnitude
Refinement.

0-7803-6685-9/01 I$ IO.000200 1 IEEE
11-765

Every bitplane is encoded using 3 passes in turn. Each pixel in a
bitplane is encoded in one of 3 passes. Pass 1 is “Significant
Propagation Pass.” Pixels having at least one significant neighbor
are coded in this pass. Pass 2 is “Magnitude-Refinement Pass.” All
significant pixels are coded in this pass. Pass 3 is “Clean-up Pass.”
Pixels not coded in first two passes are coded in this pass. While
coding a bitplane, every pixel is checked once in all 3 passes to
detennine if this pixel should be coded. In Taubman’s architecture,
a straightforward method is used. Every single bit is checked and
(or) coded in all 3 passes, which cost total 3 clocks. Coding a
64x64 code block with 8-bit precision will take 6 4 x 6 4 ~ 8 ~ 3 clocks.
That makes tier- 1 coder become bottleneck of PEG-2000 system
design.

6-e Significant

Become
Significant

Neighbor

Fig. 3. Evolution Map: higher bitplanes to lower bitplanes

According to the characteristic of the context formation process,
great improvement on process time can be achieved. Every pixel is
insignificant at the beginning of coding first bitplane (Most Sig-
nificant Bitplane), so all pixels are coded in pass 3. As we coding
toward lower bitplanes, some pixels become significant. They will
be coded in pass 2, and their insignificant neighbors will be coded
in pass I , as shown in Fig. 3.

Pixel No. :::
(0

R I1
MSB L S B

Fig. 4. Pixel distribution in 3 passes

The characteristic of the context fomiation process makes the
distribution of pixels in 3 passes vary greatly from bitplane to
bitplane. A real case is analyzed and the result is shown in Fig. 4.
It is an 8x8 LL subband (lowest frequency subband) from 256x256
Lena image with 5-level wavelet decomposition. I n highest bit-
plane (MSB), all pixels are coded in pass 3. However. in lower
bitplane (near LSB), most pixels are coded in pass 7, only few
pixels are coded in pass I , and non in pass 3. The number of pixels
coded in pass 1 increases at the beginning, and then decreases
because more and more pixels coded in pass I become significant,
Every pass spends the same time in the architecture in [3], but
some passes do not even encode a single pixel (such as pass 3 in
bitplane 0-3). We make a great improvement on process time
utilize distribution variation feature. and will be discussed later.

2.1 Column-Based Operation

Higher speed and data reuse can be achieved via column-based
operation. In Taubman’s architecture [3], data are supplied to
context formation element one pixel at a time. We speed-up con-
text formation by processing more than one pixel every clock. In
the proposed architecture, column-based operation is adopted
instead of pixel-based operation. Data are supplied to context
formation element one coluinti (four pixels) at a time. There are
two advantages of column-based operation: 1) pixels in a column
can be checked simultaneously, so speed-up methods proposed can
be applied. 2) Higher data reuse in significant and sign state vari-
ables. Memory access frequency of these state variables can be
reduced.

2.2 Two Speed-up Meth,ods

Table 11. Columns classified by number of NBC pixels con-
tained (Baboon, 5 12x5 12,S-Ievel wavelet, code block 64x64)

-
NBC 11 number of column in each Dass I

I -

Pass1 1 Pass2 I pass3 I Sum
1810761 15922312583281 598627147.85%

-
In every bitplane, each pixel is coded in one of 3 passes, so one
column in every pass may contain 0-4 Need-to-Be-Coded (NBC)
pixels. Table I1 shows the analyijis results of column-based opera-
tion. Columns are classified in every pass according to number of
NBC pixels in them. For example, there are I81076 columns
contain zero NBC pixels in pass 1, 159223 columns in pass 2, and
258328 columns in pass 3. There are in total 598627 (47%) col-
uinns contain 0 NBC pixels. The percentage of coluinns having
four NBC pixels (which means no processing time is wasted in
Taubman’s architecture [3]) is only 22.06%. According to Taub-
man’s architecture, coding a column costs 4 clocks no matter how
many NBC pixels are in it. The key ideas to improve the process
speed are: (1)skip no-operation pixels, and (2)skip no-operation
coluinns (columns with zero NBC pixel). These ideas are described
below:

1) Pixel Skipping (PS): PS is designed for all 3 passes,
which skips no-operation pixels in a colunm. By column-based
coding, pixels in a column can be parallel checked to see if they
are NBC pixels. Only NBC pixels are processed, other no-
operation pixels are skipped. If there are n NBC pixels in a col-
umn(0 -< n -: 4), only n clocks will be spent on coding these NJ3C
pixels, and 4-11 clocks are saved. Since most columns have less
than 4 NBC pixels, this method can improve system process
speed greatly, as the experimental results shown in Sec. 4.

2) Group-Of-Column Skipping (GOCS) : GOCS skips a
group of no-operation columns together in pass 2 and pass 3. By
using PS speed-up methods, every no-operation colu~nn will cost
only 1 clock for checking. To further improve process speed,
these no-operation coluinns should be skipped. Due to the prop-
erty of wavelet transfonn, spatial correlation between wavelet

11-766

coefficients is strong, so no-operation columns usually group
together. We choose every S consecutive columns as a GOC. If
there is no any column in this GOC to be a NBC column, this
GOC is directly skipped, which can save 31 clocks compare to
Taubman's design. GOCS can only applied on pass 2 and pass 3,
because of the significant propagation in pass 1. So regular cod-
ing is applied to pass 1, that is, columns are checked one by one.
After coding pass 1, all NBC columns of pass 2 and pass 3 are
decided. The GOCs that contain NBC columns are recorded.
While encoding pass 2 and pass 3, only those GOCs contain
NBC columns are processed and all no-operation GOCs are
skipped.

Every single method can improve processing speed, and each can
be used together or separately. The percentage of improvement is
given in Section 4.

3. ARCHITECTURE
An efficient column-based context formation architecture for tier-]
coder is described in this Section. The key ideas are based on the
column-based operation and two speed-up methods described
above.

Fig. 5. Tier- 1 context formation system block diagram

I n Fig.5. code block nzerlior?~ stores the whole block data in a sign
and magnitude separation manner. Starc I'ariablc Me/norics are
used for storing three different kinds of state variables (significant,
magnitude refinement, final) necessary for context formation.
These state variables corresponding to current coding column are
then sent to Stote Var-ioble PE. After some operation in State
C'rri-iob/e PE, variables needed for 4 coding PE are generated. Sign
Mogiiitirclc PE works similar to Stare Variable PE. Four coding
PES can generate contexts according to the state variables, sign and
magnitude. Three Pass Colitrollers control four codirig PES and
select the output contexts.

3.2 Column-Based Operation

The key point to applying column-based operation is to solve
memory airangement and access for significant and sign variables.
For coding a single bit, we need 9 significant state variables and 9
sign variables (variables of self pixel and 8 neighboring pixels). I n
a column-based design, 18 significant and sign variables are
needed at the same time, including cin'l'eiit and two neighboring

columns, 6 bits each, as shown in Fig. 6 . Since variables from
neighboring stripes are needed, it is quite a challenge to arrange
and access memory. For example, if significant state variables are
stored in a memory, 1 column within a stripe (4 bits) as a word,
then every time a new column is processed, 3 words must be
loaded from memory, which will take 3 clocks. Besides, more than
needed data are loaded. Only 6 more variables are needed for
coding a new column, but 12 variables are accessed.

This problem can be solved by using three smaller memories, and
set 2 bits as a word. As shown in Fig. 6, variables of different row
are interleaving placed in 3 memories (A, B, C, B, A, B). By
this arrangement, variables needed for processing a new column
can be accessed at the same time. In a situation of continuous
coding, after finish coding one column, we just shift the significant
state variables in register array to left, and load one new column
into right side of this array.

C'..11c:-.

COL::!! p:xc.s

Fro::. .Llc::ory .A

41c::ory B

41c::ory c

Fig. 6. Significant and sign variable registers

Fig. 7 is the architecture for significaizt state variobles PE. It can
provide not only the significant state variables needed, but also the
sum of significant neighbors of each pixel in current coding col-
umn simultaneously. The architecture for sign iiarinbles PE are
similar to Fig. 7 , except one small converting circuit is used in-
stead of these adders. The converting circuit converts sign vari-
ables of neighboring pixels into H,V contributions needed by Sign
Coding PE.

V I H I

v 2 H2

v 3 H3

v4 H4

Fig. 7. First 3 columns of sigrzi'jicaiit state variable PE

3.3 Pixel Skipping

To implement pixel skipping method, indexes for NBC pixels in
this column must be generated one by one. The architecture for
pixel skipping is shown in Fig. S. A 4-bit bus indicates if pixels in

11-767

current coding column are NBC pixels or not. The pixel accumula-
tor counts the number of pixels (0-3) already coded in this column.
The index of current coding pixel is generated, then the pixel
accumulator is compared with the number of NBC pixels. If all
NBC pixels in this column are coded, a change column signal is
generated. By this architecture, all no-operation pixels can be
skipped with only a little hardware cost.

Taubman’s

NBC
Pixels

Pixel
Accumulator

130 I 13-1 364 x lOk cycles

Fig. 8. Pixel skipping architecture

3.4 Group-Of-Column Skipping

Group-Of-Column skipping is applied on pass 2 and pass 3. Every
8 consecutive columns are group together as a GOC. All no-
operation GOCs in these two passes can be skipped. Since the
condition (NBC or not) of all GOCs in pass 2 and pass 3 must be
recorded in pass 1 coding, a memory for storing the conditions of
all GOCs is required. I n a general case with code block size 64x61,
a small memory of size 64x4 is needed (128 GOCs for each pass).

3.5 System Specifications

The design for EBCOT tier-1 coder, which includes context fonna-
tion and arithmetic encoder, is finished and taped out. Tables I11
shows the detail specifications of this design. Note that most of the
memories are necessary for EBCOT algorithm, and only 2S6-bit
extra memory are required for proposed speed-up method.

Table 111. Specifications of EBCOT tier-1 coder system

)Process Technoloav I 0.35um CMOS 1P4M 1
I, ,

Chip Size I 3.67x3.67 pm2 I
I 21 000 gates

+ 13 kbit memory Gate Count
Clock Freauencv I 50 MHz

lsupply Voltage I 3.3 v I
Power Consumption I 11 5.49
Package I 144 CQFP

4. EXPERIMENT RESULTS
Experiments are made on encoding various images with proposed
architecture and Taubman’s [3] for comparison. The processing
time ofcontext formation in tier-I coder is shown in Table IV. It is
clear that the performance improved dramatically, with more than
60% of improvement in all cases. A detail result that shows the
processing time of every passes is shown in Fig. 9. In the circum-
stances that only PS is applied, the processing time is reduced to

43% compared with Taubman’s architecture. By using PS+GOCS,
processing time can be fiirther reduced to 37%.

Table IV. Experimental results for processing time of pro-
posed architecture compared with David Taubman‘s, on 4
different images with size 5 12x5 12, 2 kinds of filters

PS mi, 158;IOk cycles (43 4%)
I l l i

CS+PS m l ‘ 1 3 7 xlOk cycles (37.6%)

Fig. 9. Experimental results on detail processing time of
every passes, with image ‘Lena’ and 917 filter

5. CONCLUSIONS

In this paper, analysis and architecture design of tier-1 coder of
EBCOT for PEG-2000 is presented. Column-based coding archi-
tecture with two speed-up methods, Pixel Skipping, and Group-Of-
Column Skipping are proposed according to the characteristic of
EBCOT algorithm. These two methods can improve the efficiency
of the iinpleinentation to more than 60%.

6. REFE.RENCES
[I] JPEG-2000 Port I Fiizol Continittee Droj Version I.0,

ISO1IEC JTC 1/SC29/WG1 N 1646R.
[2] M. D. Adams, F. Kossentini (UBC),H. Man (SIT), T. Ebra-

himi (EPFL), JPEG-2000: The Nest Generotion Still 1moge
Cornppr-ession Stmidord, ISOiIEC JTC l1SC 29/WG 1N1734.

[3] C. Cllristopoulos, MediaLab, Ericsson Research, Sweden,
JPEG-2000 Verificotioii Model 7.0 (Teclinicul description),
IS01IEC JTC l1SC 29/WG I N 1684, Apr. 3000.

[4] D. Taubman, EBCOT: Eiitbedded Block Codirig ivith Opti-
nzized Tmitcotioiz. ISO1IEC JTC IISC291WG 1 N 1020R.

[SI D. Taubman, High Peifor~iiorzce Scoloblc Iiitoge Coiripr-cssiort
With EBCOT, Proc. of IEEE International Conference on Im-
age Processing, Kobe, Japan. 1999, vol. 3, pp. 344-348.
D. Taubinan, Eiiibcclded Block Codirig in JPEG-2000, Proc.
of IEEE International Confe.rence on Image Processing, Van-
couver, Canada, 2000, vol. 2 , pp. 33-36.

[7] W. Peruiebaker and J. Mitchell, JPEG Still Imoge Coiiipres-
sioii Storidol-d, New York: Van Nostrand Reinhold, 1993.

[6]

11-768

