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ABSTRACT 

The focal point of this paper is a new result on the proba- 
bilistic robustness of a stochastic first order filter. For a first 
order filter transfer function, G(h, r ) ,  we allow a class of 
probability distributions F for the time constant T and con- 
sider the following question: Given frequency iu’ > 0 and 
unknown probability distribution .f E F, to what extent can 
the expected filter gain !/(d. T )  = r)l deviate from 
some desired nominal value, T,,)? It tums out that the 
deviations of concem are surprisingly low. For example, 
with 20% variation in T ,  the expected filter gain deviates 
from g(d.  T O )  by no more than U.4% of the zero frequency 
gain. In addition to performance bounds such as this, we 
also provide a so-called universalfigure of merit. The word 
“universal” is used because the performance bound attained 
holds independently of the nominal ro, the frequency w 2 0 
and the admissible probability distributions .f E F. 

1. Introduction and Formulation 

The problem considered in this paper is motivated by a new 
line of research involving Monte Carlo analysis of electri- 
cal circuits; e.g., see [5] ,  [7] and [SI. In contrast to more 
classical Monte Carlo approaches to simulation such as in 
[ I ]  - [4]. we assume little a priori information about the prob- 
ability distribution of the uncertain circuit parameters. In 
fact, the starting point for this new theory is the same as in 
robustness analysis - only bounds on the uncertain param- 
eters are assumed a priori. In view of this setup, a certain 
type of “distributional robustness” is sought; e.g., see [5]. 
That is. the performance limits which are obtained apply for 
an entire family of probability distributions F rather than a 
single assumed distribution .f E F. It often turns out to be 
the case that this new approach leads to probabilistic assess- 
ments of performance which differ considerably from the 
ones! obtained in a more classical Monte Carlo setting; for 
example, see [7] for an illustration in the context of circuits. 
To motivate the problem under consideration, we consider 
the simple circuit in Figure 1.0.1 below. 

tFunding for this research was provided by the National Science 
Foundation underGrants ECS-9711590and ECS-9SI 1051. 

Figure 1.0.1: First Order RC Filter 

With the output voltage measured across the capacitor and 
time constant T = RC, the filter transfer function is 

1 .  
G(s,  r )  = - 

1 + S T  

and the associated gain at frequency w’ E R = [O .  (x,) is 
given by 

With uncertain circuit parameters R and c‘, it is impor- 
tant to know how performance will vary when these compo- 
nents are manufactured to some specified tolerance. Within 
this context, it is of interest to describe the so-called enve- 
lope of frequency responses. A fundamental issue faced by 
the circuit designer is the captured by the following ques- 
tion: If there is no statistical description of the uncertain 
parameters entering a system, is there a way to cany out a 
Monte Carlo simulation to obtain meaningful predictions? 
In this context, the issue is what probability distribution 
to use to generate random circuit parameters. The line of 
research associated with this paper is aimed at the devel- 
opment of Monte Carlo simulation techniques which can 
be used when there are bounds but no statistics for .the un- 
derlying circuit parameters. To this end, this paper formu- 
lates and solves an optimization problem whose solution de- 
scribes the range of “distributionally robust” expected filter 
gains. 

In the sense to be described in Section 2,  we obtain a 
uniwrsaljgure of merit for a class of first order stochastic 
filters. The word “universal” is used because the perfor- 
mance bound obtained holds independently of the nominal 
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value filter parameter T = TI], the probability distribution 
f E F for deviations in T and the frequency U E R. For 
the example of the RC filter in Figure 1.0.1, this universal 
result indicates that the expected filter gain does not deviate 
from the low frequency gain by more than about 12%. 

2. Formulation 

We consider the first order filter with transfer function G( s ,  T )  

above and uncertain time constant T .  The uncertainty in the 
time constant T as described below. 

2.1 Admissible Probability Distributions: It is assumed 
that T is a random variable expressed as 

T = T T g + A T  

with nominal r(1 E 7;) = (0. XT ) and uncertainty bound 

IATI I AT,,,,,,.. 

It is assumed that T has an unknown probability density 
function f (  T )  which is supported in the interval 

7 = [TO - AT,,,, r T )  + ,.I , 

symmetric about its mean To and non-increasing in I T  - TI) I. 
We write f E FA to denote an admissible probability den- 
sityfuizctiorz .f( T ) .  Given any .f E .TA, the resulting random 
time constant is denoted as T f .  It is noted that this model of 
uncertainty is further described in [5] and [8]. Finally, we 
express the uncertainty bound  AT,,,^,. as 

~ 1 1 7  r = A TU 

O < A < 1  
with 

In other words, by working with A, we quote uncertainty 
AT as a percentage of the nominal time constant T,).  

2.2 Expected Filter Gain Envelopes: For the filter transfer 
function G( s, T )  with gain g ( ~ .  T )  and probability density 
function f E .TA, at frequency U E R, we focus attention 
on the expected gain 

rg(Ld. T f )  zk f ( T ) [ / ( d %  T )  dT 
L E T  

with its upper erzvelope 

f+fJ(d. T f  ) = sup f f / (d .  T f )  
I E F x  

and its lower eiwelope 

f-y(Ld. T f )  = inl' :-{/(d. T f )  
f € . F A  

2.3 Universal Figure of Merit: For a given level of uncer- 
tainty X E [U, 11, we seek to compute the maximum possible 
deviation between the expected gain and the nominal gain. 
Since we seek to compute this maximum with respect to all 
possible f E .TA, 71 E 7;,, arid d E R, the resulting figure 
of merit is said to be universal. That is, we seek to compute 
the universaljigure of merit 

IfFOIZ.I(A) = sup  l f [ / (d?  T f )  - g(w. T 0 ) I .  
f E F x  ruETn,a'I~R 

The next section addresses the solution of the envelope and 
UFOM problems. 

3. Solution of the ]Envelope Problem 

The first step in the solution involves the so-called Trunca- 
tion Principle; e.g. [ 5 ] .  Some .preliminaries are required. 

3.1 Truncated Uniform Distributions: For notational con- 
venience, let 

T A  = [--ATOXAT,)].  

Then, given any t E TA, the corresponding truncated uni- 
f o m  distribution I /  t ( T )  is non-zero with T in the delay in- 
terval [TO .- f , T,, + t ]  with value 

In other words, I /  ( T )  is uniformly distributed on the sub- 
interval [TO - 1 .  T,, + t ]  of TA. In this way, we obtain a 
subclass of probability density functions 

NI, = { I t  : t E T A }  c FA 

Now, in accordance with the so-called Truncation Principle, 
the optimization of expected gain with respect to .f E ;FA is 
equivalent to optimization with respect to f E T A .  That is, 

and 

where T~ i s  the random variable with probability distribu- 
tion i/ I. 
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3.2 Change of Variables: To simplify notation, we intro- 
duce the change of variables, P = d ~ ,  x(,  =  UT(^, and 
1 = wt. This leads to the problem of optimizing 

d.u 

0 0 1  - 

0.008 - 

+ lli(-.ru + t + JI.(-t.)} 

3.3 Optimization Plots: Via a series of computations, for 
each .To > 0, we first obtain 

i - ( . r n , X )  E arg!nin@(eg,t)  
t C T x  

and 
t + ( . r [ l . X )  E arginax@(.r l l . i )  

t€Tx  

This leads to the frequency-independent optima 
@ A  (Lo. t -  ( J O .  A ) )  and @ A  (zn I t+ (ZU A ) ) .  Subsequently, we 
obtain the expected gain errors 

and 

whose plots are shown in Figures 3.3.1 and 3.3.2 for rep- 
resentative values X = 0.25, X = 0.5, X = 0.75, X = 1. 
The lowest curves correspond to X = 0.25 while the highest 
curves correspond to X = 1. 

0.02 

1 0  15 20 

.l; I) 

Figure 3.3.1: Plot of Expected Gain Error e+ ( .L(, ~ A )  

Figure 3.3.2: Plot of Expected Gain Error t - ( ~ g ,  A)  

Combining t + (XI) A )  and e -  ( 1 ' 1 ) .  A), the uiziversaljgure of 
merit becomes 

whose plot is shown below. 

X 
Figure 3.3.3: Plot of Universal Figure of Merit Versus X 

As seen from Figure 3.3.3,  for filters of practical interest, 
the expected filter gain deviates from g(d TO ) by small amounts 
even when the uncertainty scale factor X is high. For exam- 
ple, with X = 0.2 (20% variation in T ) ,  this deviation is seen 
to be no more than 0.4% of the low frequency gain. 

3.4 Remarks: It is also of interest to note that correspond- 
ing to T O ,  there is a range of frequency 

over which the expected gain error satisfies 

S U P  Ifg(d. T f )  - !/(d% T0)I < 0.014. 
.f €3 

For the two parameter optimizations involving t and J .  it 
is worth noting that there are three distinct regions of .r 
where the errors f - ( .I'II. A )  and t- ( zll. A )  take on different 
forms. Namely for 
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it can be shown that ~ + ( . r o .  A)  E 0 and 

1 1 
F - ( S , , , X )  = {In( (1 + X ) . P u  d m  2x20 

+J(1  + (1 + A) ’ )P i )  + l l l ( ( X  - l)*Z% 

For -& < ZII < 0.9811, thepreviouslydefinedformulae for 
e -  ( . P O ,  A )  and F +  ( ~ 0  A )  are not obtained analytically. Fi- 
nal ly , for .~‘~~ 2 0.C)811,itcanbeshownthatt-(r,l,A) G 0 
and 

+& + (1 + x ) b ; )  + I l l ( ( X  - 1)X I1  

+ 7 1  ( 1 +  (1 - x ) ‘ P ; )  . 

These formulae were exploited to facilitate numerical com- 
putation associated with Figures 3.3.1,3.3.2 and 3 .3 .3 .  

4. Example: Specific RC Filter 

As a specific illustration, we consider a first order filter with 
nominal TIl = 0.01 and parameter tolerance X = 0.25. In 
Figure 4.0.1, we show the resulting maximum expected gain 
error envelope. This function of frequency is obtained as the 
maximum of the previously defined lower and upper enve- 
lope error measures f - (w’ ) = 6 - (w’ T(, , A )  and 
F + ( - ‘ )  = f+(w’Tn .  A). 

inas{ e - (U ) , CF + (w’ ) } 
io-= 

OO i1 i o 0  200 300 400 500 600 

W 

Figure 4.0.1: Example First Order Filter With TL]  = 0.01 

It is noted that with this 25% possible error in J, the result- 
ing maximum expected gain error is less than 0 6(,? of the 
low frequency gain. 

5. Conclusions and Possible Generalizations 

were surprising to the extent i.hat the gain errors often tum 
out to be quite small even when the parameter uncertainty 
is large. 13y way of future research, it would be important 
to consider a more general circuit and study the extent to 
which sinlilar performance measures can be computed in 
the presence of multiple uncertainties. To this end, the au- 
thors are currently investigating the efficacy of the so-called 
spherical uncertainty model .in this context; see [9]. Ap- 
proaching larger circuits via this approach appears promis- 
ing because one can avoid the ,computational difficulties which 
arise when optimizing multiple truncations associated with 
the probability distributions for the circuit parameters. 
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In this paper. we have calculated various performance mea- 
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