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ABSTRACT
Characterization of the stability boundary of differential-algebraic
(DAE) systems is more complicated than for systems described
by ordinary differential equations (ODEs). In addition to unstable
equilibria and periodic orbits, algebraic singularity plays an impor-
tant role in defining the stability boundary. This paper presents a
Lyapunov-based method for direct assessment of transient singu-
larity, thus enabling estimation of the region of state-space where
the system model remains valid.

1. INTODUCTION

The characterization of the stability boundary of systems that are
modelled by ordinary differential equations (ODEs) is well docu-
mented [1]. For a large class of such systems the stability bound-
ary is composed of the stable manifolds of unstable equilibrium
points and unstable periodic orbits that lie on the stability bound-
ary. Many systems cannot however be represented in an ODE
form. A differential-algebraic (DAE) model is more appropriate.
Trajectories of DAE systems are constrained to lie on a manifold
described by the algebraic equations. When these constraints are
present in the system, analysis of the stability boundary becomes
more complicated. A detailed mathematical taxonomy theory for
large DAE systems, such as power systems, is provided in [2, 3].

The state-space of DAE systems is divided into open compo-
nents by surfaces where the algebraic equations are singular. The
open components are often referred to as causal regions, and the
singular surfaces form the impasse surface [4, 5]. Over causal com-
ponents, system dynamic behaviour evolves according to a locally
equivalent ODE system representation. However trajectories that
reach the boundary of a causal component, i.e, that encounter the
impasse surface, typically undergo loss of existence/uniqueness.
The DAE model breaks down. Causal components usually con-
tain regions of stability and instability. Of most interest are the
regions of attraction of stable equilibria. It was shown in [3] that
the boundary of the region of attraction of stable equilibria often
includes segments of the impasse surface.

Algebraic singularity therefore plays a crucial role in assess-
ing the stability/viability of DAE systems. System trajectories
generally cannot continue after encountering the impasse surface.
Hence, it is necessary to determine the region of state-space where
the system is causal. Lyapunov (direct) methods have been widely
used to estimate the stability boundary of ODE systems. However,
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they do not naturally take account of the situation where the bound-
ary includes sections of the impasse surface. This paper presents an
approach to direct assessment of algebraic singularity. It is shown
that provided the system has less energy than a critical value, the
trajectory will never encounter the impasse surface and causality
will be ensured. The paper provides algorithms for determining
that critical value of energy.

2. MODEL AND STATE-SPACE STRUCTURE

Many systems are best modelled by a differential-algebraic repre-
sentation of the form

ẋ = f(x, y), f : �n+m → �n (1)

0 = g(x, y), g : �n+m → �m (2)

where

x ∈ X ⊂ �n, y ∈ Y ⊂ �m.

For model (1)-(2), the augmented state-space is X × Y , where x
are the dynamic states and y the algebraic (instantaneous) states
respectively. In power systems for example, the dynamic state vari-
ables include generator flux linkages, rotor angles, control states
and dynamic load states. Typical examples of algebraic variables
include load bus voltages and phase angles.

Whilst the dynamics of state variablesx are governed explicitly
by (1), the dynamics of algebraic variables y are assumed to be so
fast that the algebraic constraints (2) are always satisfied. In other
words the states are constrained to the set

G = {(x, y) ∈ X × Y : g(x, y) = 0}. (3)

Every trajectory of the DAE model (1)-(2) must lie within G.
HoweverG often contains points where (2) does not have a unique
local solution. These points are called singular or noncausal points
[4, 5], and form the singular surface or impasse surface defined by

S = {(x, y) ∈ G : ∆(x, y) ≡ det gy(x, y) = 0} (4)

where gy = ∂g/∂y is the Jacobian of algebraic equations with
respect to algebraic variables. Trajectories that encounter S gen-
erally cannot continue. In power systems, the existence of the
impasse surface is closely related to load models [5, 6].

Generically, the constraint manifold G is divided into open
connected components Ci called causal regions that are separated
by segments of the impasse surface S [2, 5]. The principal causal
region C0 is defined as the component where all eigenvalues of
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gy are positive. This component will usually contain a stable
equilibrium point (EP), though other components may also contain
stable EPs.

In DAE systems, the region of attraction of each stable EP is
a subset of the associated causal region. To describe the boundary
of the region of attraction, it is helpful to establish the sets [2, 3]

Ψ = {(x, y) ∈ S : h(x, y) ≡ adj(gy(x, y))gx(x, y)f(x, y) = 0}
Ξ = {(x, y) ∈ S \ Ψ : ∆y(x, y)h(x, y) = 0}
where adj(gy) refers to the adjoint (adjugate) of gy . These sets de-
fine pseudo-equilibria and semi-singular points respectively. The
equilibrium nature of points in Ψ follows from a time-scale trans-
formation of the original DAE model (1),(2), i.e,

ẋ = f(x, y)∆(x, y) (5)

ẏ = −adj(gy(x, y))gx(x, y)f(x, y). (6)

The boundary of the region of attraction of a stable EP, denoted
∂A, is composed of:

• Stable manifolds of unstable equilibria and periodic orbits,
e ∈ ∂A,

• Stable manifolds of particular pseudo-equilibria called trans-
verse pseudo-saddles, ψ ∈ Ψ ∩ ∂A,

• Stable manifolds of particular semi-singular points called
semi-saddles, ξ ∈ Ξ ∩ ∂A, and

• Singular boundary pieces, S ∩ ∂A.

Complete details of this categorization can be found in [2, 3].

3. DIRECT ASSESSMENT OF SINGULARITY

3.1. Background

As indicated in Section 2, the stability boundary of stable equilibria
can include sections of the impasse surface. Stability assessment
should therefore take account of algebraic singularity. A Lyapunov
(energy) function approach is adopted in this paper.

Energy functions form the basis for many direct stability as-
sessment algorithms [7]. Many of these techniques use the energy
of the controlling unstable equilibrium point (UEP) to estimate the
stability boundary. These methods have been developed for ODE
systems though, and so do not take algebraic singularity into ac-
count. However it has been shown in [3] that for DAE systems,
UEPs may not even exist within a particular causal region Ci. In
such a case, the stability boundary is solely determined by seg-
ments of the impasse surface. A technique which accounts for the
impasse surface in therefore important.

It was shown in [3] that the minimum energy on the stability
boundary occurs at a UEP, a pseudo-saddle or a semi-saddle. The
energy of such a point can be used as the critical energy to esti-
mate the stability boundary. These concepts are consistent with
the closest UEP method of ODE systems, which typically gives
conservative estimates of stability.

Another interesting energy function approach was proposed in
[8], in the context of power system applications. It shares some
similarities with the potential energy boundary surface (PEBS)
method [7], in that the initial estimate of the critical energy is re-
lated to the energy at the point where the sustained fault trajectory
intersects the impasse surface. This initial guess is refined via
an optimization algorithm that approximates pseudo-saddle condi-
tions. The final estimate does not truly reflect the energy over the

impasse surface. Therefore the initial and final estimates of criti-
cal energy provide lower and upper bounds on the critical clearing
time. An approach which considers the actual energy over the
impasse surface is desirable. Such a method is proposed in the
sequel.

3.2. Problem Formulation

The method presented here is motivated by ideas proposed in [9].
Suppose a Lyapunov (energy) function V exists for the system (1)-
(2). An estimate of the critical energy (that ensures the post-fault
trajectory never encounters the impasse surface) is calculated by
minimizing the energy over the impasse surface. This minimization
can be formulated as

min
(x,y)

V(x, y) (7)

s.t. g(x, y) = 0 (8)

det gy(x, y) = 0. (9)

Equation (9) can also be expressed as

gyv = 0 (10)

v2
1 + v2

2 + · · · + v2
n = 1 (11)

where v is the right eigenvector corresponding to a zero eigenvalue
of the algebraic Jacobian gy . Condition (11) ensures a nonzero
eigenvector in (10).

Using Lagrangian multiplier theory, the constrained minimiza-
tion problem (7)-(8) together with (10)-(11) can be transformed
into an unconstrained minimization of the Lagrangian function
L : �n+4m+1 → �,

L(x, y, λ1, λ2, µ, v) =V(x, y) + λt
1g + λt

2gyv

+ µ(v2
1 + v2

2 + · · · + v2
n − 1) (12)

where λ1 and λ2 are m-dimensional (column) vectors of La-
grangian multipliers associated with constraints (8) and (10) re-
spectively, and µ is the the Lagrangian multiplier associated with
constraint (11). The minimum of L is given by the first order
optimality conditions [10],

∇x,y,λ1,λ2,µ,vL(x∗, y∗, λ∗
1, λ

∗
2, µ

∗, v∗) = 0 (13)

where (x∗, y∗, λ∗
1, λ

∗
2, µ

∗, v∗) is a local minimum of L. These
conditions represent n+ 4m+ 1 equations in the same number of
unknowns, viz., the states x, y, the Lagrangian multipliers λ1, λ2

and µ, and the elements of the eigenvector v. Equation (13) can be
written explicitly as

∇xL = ∇xV + gt
xλ1 + (gyv)

t
xλ2 = 0 (14)

∇yL = ∇yV + gt
yλ1 + (gyv)

t
yλ2 = 0 (15)

∇λ1L = g(x, y) = 0 (16)

∇λ2L = gy(x, y)v = 0 (17)

∇µL = v2
1 + v2

2 + · · · + v2
n − 1 = 0 (18)

∇vL = gt
yλ2 + 2µv = 0 (19)

where gx ≡ ∂g/∂x, and other partial derivatives follow the same
convention.

The system (14)-(19) constitutes a set of nonlinear equations
that can be solved for the optimum solution (x∗, y∗, λ∗

1, λ
∗
2, µ

∗, v∗)
using an iterative nonlinear solver such as the Newton method.
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Figure 1: Three-machine three-bus system.

The critical energy V(x∗, y∗) can be used to estimate the stabil-
ity boundary. If a system at point (x0, y0) has less energy than
this critical value, i.e., V(x0, y0) < V(x∗, y∗) ≡ Vcr , then the
trajectory starting from (x0, y0) will never encounter the impasse
surface.

3.3. Example

A power system example is used to illustrate the minimization
proposed in Section 3.2. For power systems, the energy function
is composed of kinetic energy Vke and potential energy Vpe terms

V = Vke(ω) + Vpe(x̄, y)

where x̄ includes all dynamic state variables except generator
speeds ω. The kinetic energy Vke(ω) is quadratic in ω, and ω
does not appear in the algebraic equations g. Therefore by (14),
ω∗ = 0 at the optimal point, and hence Vke(ω

∗) = 0. It follows
that only the potential energy Vpe needs to be minimized in (7)-(9).

Consider the small system shown in Figure 1. Machines were
represented by the classical machine model. Terminal buses were
retained, introducing algebraic (power balance) equations and al-
gebraic variables, viz., bus voltage magnitudes and angles. Active
power loads were zero. All reactive power loads were modelled as
voltage dependent, i.e.,Q(V ) = Q0V

η , withQ0 taking the values
1.5, 1.0 and 1.0 per unit at buses 1, 2 and 3 respectively. Algebraic
singularity is more likely to occur with lower values of voltage
indices ηi. Therefore indices of ηi = 0.5 were chosen to induce
singularity. These values resulted in the impasse surface shown in
Figure 2 as a dark line1. The critical energy given by minimizing
Vpe over the impasse surface, i.e., the solution of (14)-(19), was
Vmin

cr = 2.65. This minimum energy point is marked by MinEP
in Figure 2.

A three-phase fault was applied at bus 3. The critical clearing
time predicted using Vmin

cr was tmin
cr = 0.324s. From simulation,

the critical value of energy was found to be Vsim
cr = 2.76. The

corresponding critical clearing time was tsim
cr = 0.332s. Figure 2

shows the case where clearing was delayed just slightly beyond
that critical value, to tcl = 0.333s. The trajectory encountered the
impasse surface at point A and could not continue. The critically
cleared case is shown in Figure 3. In this case the trajectory
approached point A but swung around before touching the impasse
surface, allowing the trajectory to continue.

Note that Vmin
cr < Vsim

cr , i.e., the energy of the system can
be greater than the critical value predicted using the minimization
approach, yet the system is stable. This is a consequence of the

1The impasse surface was obtained using a continuation method [11].
An initial point on the impasse surface was identified by monitoring the
eigenvalues of gy along a fault-on trajectory.
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Figure 2: Trajectory encounters the impasse surface at A.
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Figure 3: Critically cleared trajectory.

conservativeness inherent in Lyapunov theory, which provides suf-
ficient but not necessary conditions. However the predicted fault
clearing time of tmin

cr = 0.324s compares well with the actual
value of tsim

cr = 0.332s.
In this example trajectories have been constrained to the princi-

pal causal regionC0, i.e., the component of the constraint manifold
Gwhere all eigenvalues of gy are positive. The concepts illustrated
here extend naturally though to allow stability assessment on any
causal component Ci that contains a stable equilibrium point.

4. MINIMIZATION PRACTICAL CONSIDERATIONS

The set of equations (14)-(19) that follows from the optimality
conditions can be written in the form

F (z) = 0

where z = [xt yt λt
1 λ

t
2 µ v

t]t. A Newton algorithm solves these
equations using the iterative process

zk+1 = zk − αk J−1(zk)F (zk) (20)

to move from the kth to the (k + 1)th iteration. In (20), α is
the stepsize (acceleration factor) and J is the Jacobian matrix of
(14)-(19) calculated at the kth iteration. It can be shown that J is
also the Hessian matrix of the Lagrangian function L [10].
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Figure 4: Illustration of the continuation algorithm.

A disadvantage of the the Newton algorithm is that a good
initial guess is required. The difficulty of finding the initial val-
ues is compounded by the presence of Lagrangian multipliers and
elements of the eigenvector v. Unfortunately there is no straight-
forward way of assigning good initial values for ensuring fast con-
vergence.

To deal with this problem, a continuation algorithm developed
in [12] has been adapted. This algorithm computes a sequence of
points along a continuation path. At each successive point, reliable
initial guesses are computed from the solution at the previous point.
The algorithm solves a parameterized problem that is initialized at
the stable equilibrium point (SEP). The minimization problem (14)-
(19) can be parameterized by an eigenvalue κ of gy that turns zero
on the impasse surface.

Let v� be the eigenvector corresponding to the (parameterized)
eigenvalue2 κ�, i.e., gyv� = κ�v�. The desired minimization can
be achieved by solving the parameterized version of (14)-(19)

∇xV + gt
xλ1 + (gyv�)

t
xλ2 = 0 (21)

∇yV + gt
yλ1 + (gyv�)

t
yλ2 = 0 (22)

g(x, y) = 0 (23)

gy(x, y)v� − κ�v� = 0 (24)

v2
�1 + v2

�2 + · · · + v2
�n = 1 (25)

gt
yλ2 + 2µv� − κ�λ2 = 0 (26)

for a sequence of values of the parameter (eigenvalue) κ� stepping
from the SEP value κsep

� to 0. Note that the derivatives of the
energy function Vx and Vy vanish at the SEP. So when κ� = κsep

� ,
all equations in (21)-(26) are trivially satisfied for λ1 = 0, λ2 = 0
and µ = 0. Therefore the SEP serves as a good starting point for
the continuation process. To move from the SEP, the parameter κ�

is reduced towards zero. Equations (21)-(26) are solved for each
successive value of κ� using the previous solution as the initial
guess. The desired minimum, i.e., the solution of (7)-(8) together
with (10)-(11), is obtained when κ� = 0. This process is illustrated
in Figure 4.

5. CONCLUSIONS

Trajectories of differential-algebraic systems are constrained to lie
on a manifold described by the algebraic equations. This com-

2The eigenvalue chosen is that which reduces towards zero along the
fault-on trajectory.

plicates the stability assessment of such systems, as the stability
boundary includes segments of algebraic singularity. This paper
proposes a Lyapunov (energy) method for direct assessment of
transient singularity.

Transient singularity will be avoided if the system has less
energy than a critical value given by minimizing energy over the
relevant segment of the impasse surface. This minimization is
complicated by the initialization of Lagrangian multipliers. A
continuation algorithm is presented. The critical energy enables an
estimate of the stable causal region surrounding a stable equilibrium
point. A power system example has been used for illustration.
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