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ABSTRACT 

This paper presents a novel neural oscillator model that is 
inspired by biological oscillation models and is easily 
implemented in subthreshold analog CMOS VLSI. The 
proposed model uses local coupling among neuron units. 
Synchrony and information propagation are demonstrated in 
chains and rings of the oscillators. 

1. INTRODUCTION 

Using neural oscillations to encode temporal correlation has 
received considerable interest in the literature [l, 21. Many 
researchers believe that neural oscillations are triggered by 
sensory stimulation and that these oscillations are used in 
subsequent computation. The simplest models hold that 
synchronous oscillations occur across an extended brain 
region if the stimulus constitutes a coherent object. A recent 
example of this type of model is Terman and Wang's 
LEGION model [3]. More sophisticated models of brain 
activity, such as Freeman's olfactory model propose chaotic 
networks of local oscillators for associative memories and 
other computations [4]. There are too many examples of 
neurodynamical models in the literature to exhaustively list 
them all but a common element in many of these models is 
a simple oscillator connected in a prescribed topology to 
achieve some sort of computation. Much work has been 
done on the numerical analysis of different oscillator 
models and on difficulties in their digital numerical 
simulation. Here, we propose to use analog VLSI to build 
efficient, real-time simulations of a whole host of different 
neural dynamic models. 

There are already examples of VLSl neural oscillators in the 
literature including work in our lab involving networks of 
Chua oscillators [5, 61 and a VLSI implementation of 
Freeman's model [7]. However, these circuits and others in 
the literature [3, 81 require complex or nonhomogenous 
oscillators that complicate the VLSI implementation. Our 
goal in this paper is to design the simplest local oscillator 
that can still be used in neurodynamics experiments for 
computation. 

In section 2, we describe our single neural oscillator model. 
In section 3, we present the synchrony and information 
propagation in chains and rings topologies of the neural 
oscillators. Finally, in section 4, we present the simulated 
results of the VLSI implementation. 

2. SINGLE NEURAL OSCILLATOR MODEL 

The relation among neurons of the central nervous system 
can be considered to be a neuron link system [9]. A simple 
link consists of one excitatory neuron and one inhibitory 
neuron, which forms a closed loop. Among the simple links a 
variety of median neurons may form more complicated 
loops. Research on short-term memory [9] has shown that 
there exists oscillation among these neuron loops in the 
brain. A simple neuron closed loop oscillator may look like 
that shown in Figure 1. Based on this topology, we propose a 
novel neural oscillator model. 
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Figure 1 The topology of a single neural oscillator. Neuron X is an 
excitatory neuron'and neuron Y is an inhibitory neuron. a is the 
synaptic link weight from neuron X to neuron Y. -b is the synaptic 
weight from neuron Y to neuron X. Both a and b are positive 
values. 

In Figure 1, neuron X is an excitatory neuron and neuron Y 
is an inhibitory neuron. a is the synaptic link weight from 
neuron X to neuron Y. -b is the synaptic weight from neuron 
Y to neuron X. Both a and b are positive values. The positive 
link from neuron X to neuron Y indicates neuron X excites 
neuron Y. Similarly, the negative link from neuron Y to 
neuron X indicates neuron Y inhibits neuron X. The single 
neuron model is depicted in Figure 2. 
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Figure 2 The single neuron model. 

The sum unit' in the single neuron mod 
summation characteristics of the nervoi' 

;nts the 
191. The 

I11 - 245 
0-7803-6685-910 1 1$10.000200 I IEEE 



stimulation from different sources such as the external 
input, neural oscillator counterparts, other neural oscillator 
outputs or the feedback from the neuron itself will be added 
together. The total value of stimulation after the summation 
is named U. This sum will be input to a nonlinear function 
F(U) to produce the output of the neuron. x and y in Figure 
2 are the output of neuron X and neuron Y in Figure 1, 
respectively. R and C in Figure 2 denote the resistance and 
capacitance of neuron membrane. The stimuli have the 
characteristics of voltage. The nonlinear function F(U) 
works like a voltage-to-current converter. The performance 
of the nonlinear function F(U) determines the states of the 
neuron and is described by a sigmoid function 

(1) 
where Ib is the bias current of the voltage-to-current 
converter, g is the gain of the neuron and 8 is the threshold 
of the neuron. 

F ( U )  = I, tanh 60 .U - 8 ) 

Based on these models and Kirchoff current laws, the neural 
oscillator model is described by the following differential 
equations. 

Where E denotes the external stimuli, & and s,. denote the 
output of other neural oscillators, 8, and 8,. are the 

threshold of neuron X and neuron Y respectively. In the 
model, we assume the excitatory neurons and inhibitory 
neurons have the same membrane resistance and 
capacitance. We also assume the sigmoid functions of these 
two kinds of neurons have the same gain and bias. In 
addition, there exists positive feedback in the excitatory 
neurons, which is required for oscillation. 

When the input to the excitatory neuron is larger than the 
threshold of the neuron, the excitatory neuron will give the 
inhibitory neuron a positive stimulus, which causes the 
inhibitory neuron to increase its inhibitory stimulus to the 
excitatory neuron. The increase of this inhibitory input will 
cause the excitatory neuron to decrease or even lose 
excitation. Meanwhile the positive feedback of the 
excitatory neuron tries to push the excitatory neuron into 
excitatory state. As time goes on, when the accumulation of 
positive stimulation increases high enough above threshold, 
the excitatory neuron becomes excited again and the same 
course of events repeats. This is the application of 
accumulation on temporal space of the nervous system [9]. 
The neural oscillator thus works as a relaxation oscillator. 
When Sl, and S, are zero, the nullclines of the neural 
oscillator in equation (2) are 

(3) 

(4) 
When g=2, a-2, b=l, 8, =0.72, 0, = o ,  E=0.5, I b .  R = l ,  
the nullclines in equation (3-4) are shown in Figure 3(a). 
Keeping all the other parameters unchanged and letting E=O 
(external stimulation is 0) and E=-0.2 (negative 
inputhhibitory input), the resulting nullclines are shown in 
Figure 3(b) and Figure 3(c). 

It is clear that equation (2) defmes a typical relaxation 
oscillator. When P O ,  there is only one intersection point 
between the two nullclines and the oscillator produces a 
stable periodic orbit. When E=O, the nullcline of equation (3) 
starts to intersect the nullcline of equation (4) at a stable 
fixed point. This is the critical state. As E becomes negative, 
the oscillator quits from the active state and the system 
converges to a stable point. Examples of the trajectories in 
phase space with external input E=0.5, E=O and E=-0.2 are 
also shown in Figure 3. The initial point is at (-0.5 0.5). The 
simulations were numerically solved with the fourth-order 
Runge-Kutta method. It is clear that a limit cycle is generated 
when the external input is greater than 0 and the system 
reaches a stable point when the external input is zero or less. 
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Figure 3 Nullclines and trajectory of a single neural oscillator 
shown in phase space. Dash line is the nullcline of equation (3). Dot 
line is the nullcline of equation (4). The solid lines in Figure (a). (b). 
(c) are the trajectories in phase space for E=0.5, E=O. and E=-O.2. 

Finally, it should be pointed out that there exist ranges for 
the parameters in the single neuron model. We tried to select 
a good set of parameters that will fit the parameters of a 
VLSI circuit and facilitate the design. The set of parameters 
discussed above is one such set and they are selected to build 
circuits. 

3. SIMPLE NETWORKS OF NEURAL OSCILLATORS 

The single neural oscillators are connected together to 
construct a chain of N oscillators (Figure 4). Each oscillator 
is connected to its neighbors by coupling between excitatory 
neurons and between inhibitory neurons. We denotes the 
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synaptic connection weights between excitatory neurons 
and W, denotes the synaptic connection weights between 
inhibitory neurons. The effects of neighbor neural 
oscillators are described by 

(5a) 

(5b) 
Assume that all the W,'s have the same value and that all 
the W,'s have the same value. For the neurons at the head 
and tail, let the weights be doubled so that the weights are 
balanced through the chain. We found that with uniform 
external input and random initial values for each oscillator, 
the chain is synchronized after an initial period of phase 
transition. Figure 5(a) presents a simulation with N=10 
oscillators. Homogeneous inputs were used as the external 
stimulation to the neural oscillators. Wi,v,=0.3. W,=O.OS. From 
the figure we can see that when the system is in synchrony, 
s,=s, (i,j=l, 2.  ... , N). Because of the equal weights to each 
oscillator, dx, ldt = dx, ldt. Therefore, the system will keep 
the stability of the synchronized solution. 

S, ( k )  = W,(k,k - 1). x(k - 1) + W,(k,k + 1). x(k + 1) 
s, ( k )  = ry(k,k - l).y(k - 1) + ry(k,k + I).?@ + 1) 
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Figure 4 A chain of the neural oscillators. 
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Figure 5 (a) Synchrony in a chain of 10 neural oscillators with 
homogeneous inputs of 0.5. The initial values of excitatory and 
inhibitory neurons are set randomly. W,,=0.3. W,=0.05. 8000 
integration steps are siinulated. (b) Infomiation propagation in a 
chain of 20 oscillators. E\tenial stimuli of E=0.2 was input for 
2000 integration steps to the first oscillator (the top one). Then it 
was cancelled. The infonilation was propagated through the chain 

Cohen [ 101 and Wang [ I  11 also achieved synchrony in  their 
neural networks but our model is simpler and uses a unique 
neuron model with the parameters decided by circuit 
implementation. In addition. the connections between both 
excitatory and inhibitory neurons are taken into 
consideration, which covers the single connection case [ 1 I ]  
and provides potential control and application to the neural 
networks. 

For non-homogeneous inputs, the propagation of information 
in a chain of oscillators is studied. Stimulation to the first 
neural oscillator was given for some time. Then it was 
removed. The oscillation propagated from the first oscillator 
to its neighbor, then to its neighbor's neighbor, and so on. A 
simulation result is shown in Figure 5(b) with 20 oscillators 
in a chain. All the parameters are the same as in Figure 5(a), 
except that there is only one stimulus to the first oscillator 
and it lasts for 2000 integration steps. 

Moreover, a ring of neural oscillators is formed by 
connecting the first and last oscillators in Figure 4 together. 
The connection weights are the same as in equation 5. 
Synchrony and propagation can also be found in the ring of 
the oscillators. 

4. CIRCUIT REALIZATION 

The neural oscillator model is implemented in analog CMOS 
VLSI. A precise implementation of the tanh function in the 
neuron model will require a lot of components in an above 
threshold CMOS implementation. However it can be easily 
realized with a transconductance amplifier in the 
subthreshold region. Working below threshold will hrther 
save power consumption. The nonlinear unit F(U) in Figure 
3 is characterized by a wide range transconductance 
amplifier (transamp) working in subthreshold region. Let V,, 
and VI. denote the input signals to the non-inverse and 
inverse ports of the amplifier respectively. Let I ,  and Zb 

denote the output current and the biasing current providing 
the working current for the transconductance amplifier 
respectively. It is shown that [ 121 the output current satisfies 

L 

where K is the parameter denoting the effect of charges from 
the ionized donors or acceptors in the substrate under the 
gate reducing the effectiveness of the gate at controlling the 
barrier energy. 

A complete neural oscillator circuit schematic is shown in 
Figure 6. A summing block is needed as a voltage adder. 
Since an opamp adder is not an ideal candidate, we proposed 
a voltage adder that consists of several transamps that work 
in  the subthreshold region. The addition/subtraction is 
implemented within the linear regions. Diode degeneration is 
used to increase the linear region of the transamps. The 
parameters (a, b, g. etc) of the model are realized by 
controlling the bias voltage of the transamps. In addition, 
since 

(7) 
(here : and e denote the input signal and threshold voltage to 
a nonlinear unit respectively), we can simply reverse the 
inputs to the nonlinear unit to get the inverse output. This can 
easily realize the subtraction in the model. There are 11 
transistors in a wide-range transamp and 7 transistors in a 

tanh( z - 0)  = - tanh( 8 - z )  
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simple transamp. The whole circuit is composed of 
transamps and capacitors, which makes the full oscillator 
very small. In addition, the gain of wide range transamps 
and the resistance of simple transamps can be easily 
controlled by bias voltages, which makes the circuits 
flexible. SPICE simulation results are shown in figure 7 for 
a 1 . 6 ~ 1  CMOS process. 

Vdd 

Vb_R2 - 
-a 
Vdd Z 3 
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Figure 6 The schematic of a single oscillator. The triangular units 
denote simple transamps. The polyangular units denote wide range 
transamps. Ve denotes the external input. Vx and Vy denote the 
threshold voltage of excitatory and inhibitory neuron respectively. 
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Figure 7 Simulation results of the circuit oscillation behavior. (a) 
is the transient response of an oscillator. (b) illustrates the outputs 

of neuron units in phase space. External input is 50111v. 
Vdd=+ 1.W. VSF- 1.5V. 

5. CONCLUSION 

This paper presents a novel neural oscillator model that is 
inspired by biological phenomenon and designed for 
subthreshold circuit implementation. The model parameters 
are decided according to the circuit parameters and is easy to 
be implemented with mixed mode, sub-threshold, VLSI 
technology. The built-up oscillator is input controllable and 
exhibits the characteristics of synchrony under homogeneous 
input in a chain or ring of the oscillators. These are in 
agreement with some of the existing neural oscillators [3, 4, 
1 13. Information propagation (nonhomogeneous input) is 
also demonstrated in a chain network of oscillators. Further 
research will be focused on the information storage and 
associative memory in the neural oscillator networks. 
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