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ABSTRACT

Weexaminetheproblemof detectingnegativecyclesin adynamic
graph,which is a fundamentalproblemthat arisesin electronic
designautomationandsystemstheory.

Weintroducetheconceptof adaptive negativecycledetection,
in which a graphchangesover time, andnegative cycle detection
needsto be doneperiodically, but not necessarilyafter every in-
dividual change.Suchscenariosarise,for example,during iter-
ative designspaceexplorationfor hardwareandsoftwaresynthe-
sis. We presentanalgorithmfor this problem,calledtheAdaptive
Bellman-Ford (ABF) algorithm,basedon a novel extensionof the
well known Bellman-Ford algorithm. TheABF algorithmallows
usto systematicallyadaptinformationfor agivengraphto a mod-
ified versionof thegraph.Weshow thattheABF algorithmsignif-
icantly outperformspreviously availableapproachesfor dynamic
graphs,which either recomputenegative cycle information from
scratchwhenever agraphis modified,or processthemodifications
oneata time (“incrementally”).

As anapplicationof theABF technique,weshow thatit canbe
usedto obtainaveryfastimplementationof Lawler’stechniquefor
thecomputationof themaximum-cycle mean(MCM) of a graph,
especiallyfor acertainimportantkind of sparse graph. Wefurther
illustratetheapplicationof theABF techniqueto design-spaceex-
plorationby developingautomatedsearchtechniquesfor schedul-
ing iterative data-flow graphs.

1. INTRODUCTION

Severalproblemsin circuitsandsystemstheoryrequirethesolving
of constraintequations[1, 2, 3]. ExamplesincludeVLSI layout
compaction,computingmaximumoperationalspeedof circuits,
andperformanceanalysisof interactive(reactive)systems.Several
problemsof interestactuallyconsistof thespecialcaseof differ-
enceconstraints(eachconstraintexpressestheminimumor max-
imum valuethat thedifferenceof two variablesin thesystemcan
take). Theseproblemscanbe attacked by fastertechniquesthan
linear programming,suchasby solving a shortestpathproblem
on a weighteddirectedgraph. A relatedproblemis the detection
of negativecyclesin thegraph,whichwouldindicatein-feasibility
of the correspondingconstraintsystem. Considerableeffort has
beenspenton finding efficient algorithmsfor negative cycle de-
tection. Cherkassky andGoldberg [1] have performeda compre-
hensive survey of existing techniques.Their study shows some
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interestingfeaturesof the available algorithms,e.g. for a large
classof randomgraphs,the worst caseperformanceboundis far
morepessimisticthantheobservedperformance.

Therearealsosituationsin which it is usefulor necessaryto
maintaina feasiblesolutionto a setof differenceconstraintsasa
systemevolves. Typical examplesof this would be real-timeor
interactive systems,whereconstraintsareaddedor removed one
(or several)at a time, andaftersomemodifications,it is required
to determinewhetherthe resultingsystemhasa feasiblesolution
andif so, to find it. In thesesituations,it is often moreefficient
to adaptexisting informationto aid the solutionof the constraint
system. In the areaof computer-aidedsystemdesign,it is often
easyto casttheproblemof designspaceexplorationin a way that
benefitsfrom this approach.

Severalresearchers[4, 5, 6] have workedon theareaof incre-
mental computation. They have presentedanalysesof algorithms
for the shortestpathproblemandnegative cycle detectionin dy-
namic graphs.Theseapproacheshavefocussedontheincremental
(singlechange)problemandcannotbeextendedto takeadvantage
of multiple changesbeingmadeat thesametime.

In this paper, we presentan approachwhich generalizesthe
adaptive approachbeyondsingleincrements:we addressmultiple
changesbeingmadeto thegraphsimultaneously. This solutionis
basedonenhancingtheBellman-Fordalgorithmfor shortestpaths,
and is, to our knowledge,the first algorithmto attackthe multi-
ple changeproblem.We presentsimulationresultscomparingour
methodagainstthesingle-incrementalgorithmproposedin [2].

To illustratetheadvantagesof ouradaptiveapproach,wepresent
somesampleapplicationsrequiringthesolvingof differencecon-
straintproblems,which thereforebenefitfrom the applicationof
our technique.We show how the ABF techniquecanbe usedto
derive a fast implementationof Lawler’s algorithmfor the prob-
lemof computingthemaximumcycle-mean(MCM) of aweighted
directedgraph. We presentexperimentalresultscomparingthis
againstHoward’s algorithm[7, 3], which appearsto bethefastest
algorithmavailable in practice. We find that for graphsizesand
node-degreessimilar to thoseof realcircuits,theABF-basedalgo-
rithm oftenoutperformsHoward’s algorithm.

Wealsopresentasearchtechniqueto computeefficientsched-
ulesfor iterative dataflow graphs,that usesthe adaptive negative
cycle detectionalgorithmasa subroutine.We illustratetheuseof
this local searchtechniqueby applyingit to a problemfrom high-
level synthesis,namelyresourceconstrainedschedulingfor mini-
mumpower in thepresenceof functionalunitsthatcanoperateat
multiple voltages.

In Section2, we presentour enhancementsto the Bellman-
Ford algorithm that enableit to work on multiple changesto a
graphefficiently. Section3 comparesour algorithmagainstexist-
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Algorithm 1 Adaptive Bellman-FordAlgorithm

Require: Graph �����	��

� , ������������� , ������������� �!�
Ensure: updated ������������� such that "#�%$&��')(*���,+-
/.

�������������102����������'#�435��������������'6(-���
1: 798;:=<>��7
?@:=<
2: for all �A+B
 do
3: if �������������102����������'C�ED5���F� ��������'6(-��� then
4: append' to 798
5: end if
6: end for
7: while 798 notemptydo
8: '6:HGJIKG>� 798��
9: for all � adjacentto ' in � do

10: if �������������102����������'C�ED5���F� ��������'6(-��� then
11: deletesubtreerootedat �
12: if ' wasin thesubtreedeletedabove then
13: negative cycledetected:return
14: else
15: make � a child of 'ML constructingsubtreeN
16: append� to 7
?
17: end if
18: end if
19: end for
20: if 7
? is emptythen
21: return L completed:������� satisfiesconstraintsN
22: else
23: 798�:=7
?O�P7Q?R:=<
24: end if
25: end while

ing alternatives. Section4 then givesdetailsof the applications
mentionedabove,andpresentssomeexperimentalresults.Finally,
we presentour conclusionsandexamineareasthatwould besuit-
ablefor furtherinvestigation.

2. THE ADAPTIVE BELLMAN-FORD ALGORITHM

In this section,we proposeour extensionsto the Bellman-Ford
algorithmwhich allow usto handlemultiple changesadaptively.

Wefirst notethattheproblemof detectingnegativecyclesin a
weighteddirectedgraph(digraph)is equivalentto findingwhether
or not a setof differenceinequalityconstraintshasa feasibleso-
lution. To seethis, observe that if we have a set of difference
constraintsof theform SJT10USOV93XW�T V we canconstructa digraph
with verticescorrespondingto the S T , andan edge( � T V ) directed
from thevertex correspondingto SCT to thevertex for SOV suchthat
���F� ������� � T V �
$YW T V . This procedureis performedfor eachcon-
straint in the systemanda weighteddirectedgraphis obtained.
Solving for shortestpathsin this graphwould yield a setof dis-
tances������� thatsatisfytheconstraintson S T . This graphis hence-
forth referredto astheconstraint graph.

Theusualtechniqueusedto solve for ������� is to introducean
imaginaryvertex ��Z to actasasource,andintroduceedgesof zero-
weight from this vertex to eachof theothervertices.In this way,
we canusea single-sourceshortestpathsalgorithmto find ���[���
from �FZ , andany negative cycles(infeasiblesolution)will occur
only in theoriginal graph,sincethenew vertex andedgescannot
createcycles.Thisgraphis referredto astheaugmented graph [2].

Thealgorithmfor adaptive negative cycle detectionpresented

in Alg. 1 is anadaptationof Tarjan’s subtreedisassemblymethod
for negative cycle detectionin static graphs[1]. We henceforth
referto thismodifiedalgorithmasthe“Adaptive Bellman-Fordal-
gorithm” or ABF algorithm,to stressthatit adaptsasolutionto the
originalgraphto obtainthesolutionto theconstraintscorrespond-
ing to thealteredgraph.

Theenhancementsto thebasicalgorithmarein lines2-6. This
codeinitializesthesetof activeverticesto thoseinvolvedin acon-
straintviolation. By retaininginformationacrosscalls to therou-
tine, the computationherecanbe much lessthanwhenwe start
from scratch.After this,thenormaloperationof theBellman-Ford
algorithmfollows. Becauseof thegeneralityof theidea,otheral-
gorithmscanalsobeusedwith theadaptive enhancements.Also,
in mostapplications,it is possiblefor thehigherlevel application
to passinformationto theroutinethathelpsit to find thoseedges
wherea changehasoccurred,thusfurthersaving somecomputa-
tion, thoughthis will not changetheoverall complexity of theal-
gorithm(thecomplexity is dominatedby theactualnegative cycle
detectioncomputation).

3. COMPARISON AGAINST OTHER APPROACHES FOR
DYNAMIC GRAPHS

We comparetheABF algorithmagainst(a) the incrementalalgo-
rithm developedin [2] for maintaininga solutionto a setof differ-
enceconstraints(referredto hereastheRSJM algorithm),and(b)
amodificationof Howard’salgorithm[7], sinceit appearsto bethe
fastestknown algorithmto computethecyclemean,andhencecan
alsobeusedto checkfor feasibility of a system.Our modification
allows usto usetheadaptive techniqueto reducethecomputation
in this algorithm.

Note that theRSJM algorithmfrom [2] usesDijkstra’s algo-
rithm asits coreroutine.This impliesthatit cannotin principlebe
extendedto handlemultiplechangesin theway thatwehave done
with theBellman-Ford algorithm. We have usedtheimplementa-
tion of Howard’salgorithmfrom theauthorsof [7], andhavetaken
into accountthemodificationssuggestedby Dasdan[3].

We have restrictedour attentionto sparse graphs,or bounded
degree graphs.In particular, we have tried to keepthevertex-to-
edgeratio similar to what we may find in practice,as in, for ex-
ample,theISCASbenchmarks.Suchgraphsarerelevantbecause
realcircuitstendto have propertieslike boundedfanoutandsmall
numbersof inputs,whichresultin graphsof smallboundeddegree.

We have implementedall thealgorithmsundertheLEDA [8]
framework for uniformity. The testswererun on randomgraphs,
with several randomvariationsperformedon themthereafter. A
“change” to the graphunderconsiderationinvolved either addi-
tion or deletionof anedge,or changingtheweightof anexisting
edge.Wereferto suchchangesas“edge-changeoperations”.Note
that modifying a vertex canaffect several edges.It is becauseof
this thatwe restrictedour focusto edgechangessothatwe could
controlthenumberof changes.Weusetheterm“batch-size”to re-
fer to thenumberof changesin amultiplechangeupdate.This is a
usefulparameterto understandtheperformanceof thealgorithms.

Figure1 showsacomparisonof therunningtimeof the3 algo-
rithmson randomgraphs.Thegraphsin questionwererandomly
generatedand had 1,000 verticesand 2,000 edgeseach. A se-
quenceof 10,000edgechangeoperations(asdefinedabove) was
appliedto eachof them. Eachpoint in the plot correspondsto
an averageover 10 runs using randomlygeneratedgraphs. The
X-axis shows thebatch-size(“granularity” of changes).Notethat
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Figure1: Comparisonof algorithmsasbatchsizevaries

Figure2: Constantnumberof iterationsat differentbatchsizes

thedelayedupdatefeatureis not usedby algorithmRSJM, which
usesthefact thatonly onechangeoccursper testto look for neg-
ative cycles. As canbeseen,thealgorithmsthatusetheadaptive
modificationsbenefitgreatly as the batchsize is increased,and
even amongthese,theABF algorithmfar outperformsHoward’s
algorithm. This is becausethe latter actually performsmost of
thecomputationrequiredto re-computethemaximumcycle-mean
from scratch,which is far morethannecessary.

Figure2 shows a plot of what happenswhenwe apply 1000
batchesof changesto the graph,but alter the numberof changes
perbatch,sothatthetotalnumberof changesactuallyvariesfrom
1000to 100,000.As expected,RSJM takestotal timeproportional
to the numberof changes.But the otheralgorithmstake nearly
constanttimeasthebatchsizevaries.Theoverall performancefor
theadaptive algorithmis dominatedby overheadcorrespondingto
thebookkeepingoperations.By reducingthenumberof updatesin
theadaptive computation,therun-timefor theadaptive algorithm
is almostconstant.However, asmay be expected,as the batch-
sizeincreasesasymptotically, the run-timeof the ABF algorithm
alsostartsto increase,andwhenthenumberof changesis of the
orderof thenumberof edges,it becomesequivalentto computing
negative cyclesfrom scratch.

4. APPLICATIONS

In this section,we presenttwo applicationsthat make extensive
useof algorithmsfor negative-cycle detection.In addition,these
applicationsalsopresentsituationswherewe encounterthesame
dynamicgraphwith sequencesof small modifications– eitherin
the edge-weights(sec.4.1) or in the actualadditionanddeletion

Benchmark \ ]^\\ _4\ \ `a\\ _^\ orig.BF ABF Howard’s
MCM MCM algo.

s38417 1.416 0.069 2.71 0.29 0.66
s38584 1.665 0.069 2.66 0.63 0.59
s35932 1.701 0.097 1.79 0.37 0.09
s15850 1.380 0.057 1.47 0.18 0.36
s13207 1.382 0.077 0.73 0.12 0.35
s9234 1.408 0.039 0.57 0.06 0.11

Table1: Run-timefor MCM computationfor the6 largestISCAS
89/93benchmarks.

of a small numberof edges(sec.4.2). As a result, theseprovide
goodexamplesof thetypeof applicationsthatwould benefitfrom
theadaptive solutionto thenegative cycledetectionproblem.

4.1. Maximum Cycle Mean computation

Thefirst applicationwe consideris thecomputationof theMaxi-
mumCycle-Mean(MCM) of a weighteddigraph.This is defined
as the maximumover all directedcycles of the sum of the arc
weightsdivided by the numberof “delay” elementson the arcs.
This metric playsan importantrole in discretesystemsandem-
beddedsystems[3, 9], sinceit representsthegreatestthroughput
that canbe extractedfrom the system. Therearealsosituations
whereit maybedesirableto recomputethismeasureseveraltimes
on closelyrelatedgraphs,for examplefor the purposeof design
spaceexploration. The first extensive studyof algorithmicalter-
nativesfor this problemhasbeenundertakenby Dasdanet al. [3].
This studyconcludedthat the bestexisting algorithmin practice
for this problemappearsto beHoward’s algorithm,which, unfor-
tunately, doesnot have a known polynomialboundon its running
time.

To modelthis application,theedgeweightson our graphare
obtainedfrom theequation���F� ��������'b(c���;$d�O��egfOh#� �!�aikjl0
�FSC�Fm �n� oB�O��'C� where �R�F��������� �p� refersto the weight of the edge
�q.A'r(s� , �O��egfOht� �!� refers to the numberof delay elements
(flip-flops) on the edge, �FSC�Fm �[� ou����'#� is the propagationdelay
of the circuit elementthat is representedby the vertex, and j is
thedesiredclockperiodthatwearetestingthesystemfor. In other
words,if thegraphwith weightsasmentionedabovedoesnothave
negative cycles,then j is a feasibleclock for thesystem.We can
performabinarysearchin orderto computej to any precisionwe
require.Thisapproachis attributedto Lawler [10].

Table1 shows therun-timesof thealgorithmson someof the
ISCAS 89/93benchmarkcircuits. In the table, v �wv is the num-
ber of verticesin thegraph, v 
wv is the numberof edges,and v xyv
is thenumberof delayelements.Theresultsclearlyshow that in
several cases,Lawler’s algorithmusingour adaptive negative cy-
cledetectiontechniqueoutperformsevenHoward’salgorithm.We
have conducteda larger analysisof the relative performanceon
randomgraphs[9], andthe resultsshow that for a large classof
sparsegraphs,theABF-basedalgorithmis superior.

4.2. Search Techniques for Scheduling

A schedule of a dataflow graphon processorsconsistsof an or-
dering of the verticeson the processors.If the resultinggraph
weightedwith the executiontimesof the actorsdoesnot contain
negative cyclesasin section4.1,a valid schedulehasbeenfound.
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Example Res.(5V+, T Power saved
3.3V+,5V*) SandR ABF

5th-order L 2, 2, 2N 25 31.54% 29.88%
ellip.filt. L 2, 1, 2N 25 18.26% 16.6%

L 2, 2, 2N 22 23.24% 24.9%
L 2, 1, 2N 21 13.28% 13.28%

FIR filt. L 1, 2, 1N 15 29.45% 34.36%
L 1, 2, 2N 10 17.18% 24.54%

Table2: ComparisonbetweenABF-basedsearchandalgorithmof
SarrafzadehandRaje[11]

Sincetheunderlyinggraphis alwaysthesameandonly thevertex
orderingimposesnew edges,we caneasilyuseadaptive negative
cycledetectionto performtheconstraintcheckingefficiently.

We have examinedthe schedulingformulationaddressedby
Sarrafzadehand Raje [11] to illustrate this. The problemis to
schedulethegraphsonafixedarchitecturewherea5V addertakes
1 unit of timeto execute,a2V addertakes2 units,andamultiplier
takeseither1 unit or 2 units dependingon the application. It is
assumedthatpower consumedis proportionalto �Qz , soschedul-
ing verticeson a 3.3V resourcereducesthe power consumption.
We have attacked this problemby first schedulingeachactoron
its own resource,andtheniteratively increasingresourcesharing
while maintaininga valid scheduletill the resourceconstraintis
met.

Wehaveusedonly thisschedulemodificationmethod,namely
migrating verticesacrossprocessors.Furtherrefinementscould
take into accounttheinfluencethataverybasicsearchwouldhave
andtry to implementsomelook-ahead.Already, theresultsmatch
andevenoutperformthatobtainedin [11]. In addition,theABF-
basedmethodhasthebenefitthatit canhandleany numberof volt-
ages/processors,andcanalsoeasilybeextendedto otherproblems,
suchashomogeneousprocessorscheduling[12]. Table2 shows
thepower-savings thatwereobtainedon theexamplesfrom [11].
S andR power saving indicatesthepower savingsquotedin [11],
while ABF power savings refersto the resultsobtainedusingthe
ABF-basedschedulingapproach.{ is theoverall timing constraint
(themaximumiterationperiodboundthatwe areaimingfor).

5. CONCLUSIONS

We have introducedan adaptive approach(the ABF algorithm)
to negative cycle detectionin dynamicallychanginggraphs.Our
techniqueexplicitly addressesthe common,practicalscenarioin
whichnegativecycledetectionmustbeperiodicallyperformedaf-
ter intervals in which a smallnumberof changesaremadeto the
graph. We have shown by experimentsthat for reasonablesized
graphs(10,000verticesand20,000edges)our algorithmoutper-
formstheincrementalalgorithmdescribedin [2] evenfor changes
madein groupsof aslittle as4-5at a time.

We have alsoshown how our adaptive approachto negative
cycle detectioncan be exploited to computethe maximum cy-
cle meanof a weighteddigraph,which is a relevant metric for
many problemsin the designand analysisof circuits and sys-
tems.WehavecomparedourABF-basedMCM computationtech-
niqueagainstthemostefficient alternative, which is Howard’s al-
gorithm. We have shown that the ABF-basedtechniqueoutper-
formsHoward’s algorithmfor sparsegraphswhicharecommonly
foundin realcircuits.

Sincecomputingpower is cheaplyavailablenow, it is increas-
ingly worthwhile to employ extensive searchtechniquesfor solv-
ing NP-harddesignproblemssuchas scheduling. An efficient
adaptive negative cycle detectionalgorithm can make this pro-
cessmore profitable. We have demonstratedthis by employing
our ABF algorithmwithin the framework of a searchstrategy for
multiple voltagescheduling.
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