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ABSTRACT

We examinethe problemof detectinghegative cyclesin adynamic
graph,which is a fundamentalproblemthat arisesin electronic
designautomatiorandsystemsheory

Weintroducetheconcepiof adaptive negative cycle detection,
in which a graphchangesver time, andnegative cycle detection
needsto be doneperiodically but not necessarilyafter every in-
dividual change. Suchscenariosarise,for example, during iter-
ative designspaceexplorationfor hardware and software synthe-
sis. We presentnalgorithmfor this problem,calledthe Adaptive
Bellman-Ford (ABF) algorithm,basedon a novel extensionof the
well knovn Bellman-Ford algorithm. The ABF algorithmallows
usto systematicallyadaptinformationfor a givengraphto a mod-
ified versionof thegraph.We shav thatthe ABF algorithmsignif-
icantly outperformspreviously available approachegor dynamic
graphs,which eitherrecomputenegative cycle informationfrom
scratchwheneer agraphis modified,or procesghemodifications
oneatatime (“incrementally”).

As anapplicationof the ABF techniquewe shaw thatit canbe
usedto obtainaveryfastimplementatiorof Lawler’'stechniqueor
the computationof the maximum-gcle mean(MCM) of a graph,
especiallyfor a certainimportantkind of sparse graph. Wefurther
illustratethe applicationof the ABF techniqueto design-spacex-
plorationby developingautomatedearchechniquedor schedul-
ing iterative data-flav graphs.

1. INTRODUCTION

Severalproblemdn circuitsandsystemgheoryrequirethesolving
of constraintequationg1, 2, 3]. Examplesinclude VLSI layout
compaction,computingmaximum operationalspeedof circuits,
andperformancanalysiof interactve (reactve) systemsSeveral
problemsof interestactually consistof the specialcaseof differ-

enceconstraintgeachconstraintexpresseshe minimum or max-
imum valuethatthe differenceof two variablesin the systemcan
take). Theseproblemscanbe attacled by fastertechniqueghan
linear programming,suchasby solving a shortestpath problem
on aweighteddirectedgraph. A relatedproblemis the detection
of negative cyclesin thegraph,which would indicatein-feasibility
of the correspondingconstraintsystem. Considerableeffort has
beenspenton finding efficient algorithmsfor negative cycle de-
tection. Cherkassk and Goldbeg [1] have performeda compre-
hensve suney of existing techniques. Their study shavs some
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interestingfeaturesof the available algorithms,e.g. for a large
classof randomgraphs,the worst caseperformanceboundis far
morepessimisticthanthe obseredperformance.

Therearealsosituationsin which it is usefulor necessaryo
maintaina feasiblesolutionto a setof differenceconstraintsasa
systemevolves. Typical examplesof this would be real-timeor
interactive systemswhereconstraintsare addedor removed one
(or several) at a time, andafter somemaodificationsiit is required
to determinewhetherthe resultingsystemhasa feasiblesolution
andif so,to find it. In thesesituations,it is often more efficient
to adaptexisting informationto aid the solutionof the constraint
system. In the areaof computeraided systemdesign,it is often
easyto castthe problemof designspaceexplorationin away that
benefitsfrom this approach.

Severalresearchers|4, 6] have worked on the areaof incre-
mental computation. They have presented@nalyseof algorithms
for the shortestpath problemand negative cycle detectionin dy-
namic graphs.Theseapproachebave focussedntheincremental
(singlechangeproblemandcannotbe extendedo take advantage
of multiple changedeingmadeat the sametime.

In this paper we presentan approachwhich generalizeshe
adaptve approactheyondsingleincrementswe addressnultiple
changedeingmadeto the graphsimultaneouslyThis solutionis
basednenhancingheBellman-Fordalgorithmfor shortespaths,
andis, to our knowledge, the first algorithmto attackthe multi-
ple changeproblem.We presensimulationresultscomparingour
methodagainsthe single-incremenalgorithmproposedn [2].

Toillustratetheadantage®f ouradaptve approachye present
somesampleapplicationgequiringthe solving of differencecon-
straint problems,which thereforebenefitfrom the applicationof
our technique.We shav how the ABF techniquecanbe usedto
derive a fastimplementatiorof Lawler’s algorithmfor the prob-
lemof computingthemaximumcycle-mear{MCM) of aweighted
directedgraph. We presentexperimentalresultscomparingthis
againstHoward’s algorithm([7, 3], which appeardo bethefastest
algorithmavailablein practice. We find that for graphsizesand
node-dgreessimilarto thoseof realcircuits,the ABF-basedhlgo-
rithm oftenoutperforms&Howard’s algorithm.

We alsopresentisearchtechniqueto computeefficientsched-
ulesfor iterative dataflav graphs that usesthe adaptve negative
cycle detectionalgorithmasa subroutine We illustratethe useof
this local searchtechniqueby applyingit to a problemfrom high-
level synthesisnamelyresourceconstrainedgschedulingfor mini-
mum power in the presencef functionalunitsthatcanoperateat
multiple voltages.

In Section2, we presentour enhancementto the Bellman-
Ford algorithm that enableit to work on multiple changego a
graphefficiently. Section3 comparesur algorithmagainstexist-
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Algorithm 1 Adaptive Bellman-Ford Algorithm
Require: GraphG(V, E), dist(v), weight(e)
Ensure: updateddist(v) suchthatVe = (v — v) € E :
dist(v) — dist(u) < weight(u — v)
L QL+ ¢,Q2+ ¢
2: for al e € E do

3. if dist(v) — dist(u) > weight(u — v) then
4: appendu to Q1
5 endif
6: end for
7: while @1 notemptydo
8. u + pop(Q1)
9: for all v adjacento in G do
10: if dist(v) — dist(u) > weight(u — v) then
11: deletesubtreerootedat v
12: if u wasin the subtreedeletedabove then
13: negative cycle detectedreturn
14: ese
15: male v achild of u {constructingsubtreé
16: appendv to Q2
17: end if
18: end if
19:  end for
20: if Q2 is emptythen
21 return{completeddist satisfiesconstraint$
22: dse
23: Ql+— Q2,02+ ¢
24:  endif
25: end while

ing alternatves. Section4 then gives detailsof the applications
mentionedabore, andpresentsomeexperimentakesults.Finally,
we preseniur conclusionsandexamineareaghatwould be suit-
ablefor furtherinvestigation.

2. THE ADAPTIVE BELLMAN-FORD ALGORITHM

In this section,we proposeour extensionsto the Bellman-Ford
algorithmwhich allow usto handlemultiple changesdaptvely.

Wefirst notethatthe problemof detectingnegative cyclesin a
weighteddirectedgraph(digraph)is equivalentto finding whether
or not a setof differenceinequality constraintshasa feasibleso-
lution. To seethis, obsere thatif we have a set of difference
constraintf theform z; — z; < b;; we canconstructa digraph
with verticescorrespondindo the z;, andan edge(e;;) directed
from the vertex correspondingo x; to the vertex for z; suchthat
weight(e;;) = by; . This procedurds performedfor eachcon-
straintin the systemand a weighteddirectedgraphis obtained.
Solving for shortestpathsin this graphwould yield a setof dis-
tancestist thatsatisfythe constrainton ;. This graphis hence-
forth referredto asthe constraint graph.

The usualtechniqueusedto solve for dist is to introducean
imaginaryvertex so to actasasourceandintroduceedgeof zero-
weightfrom this vertex to eachof the othervertices. In this way,
we canusea single-sourceshortestpathsalgorithmto find dist
from so, andary negative cycles (infeasiblesolution)will occur
only in the original graph,sincethe new vertex andedgescannot
createcycles. Thisgraphis referredto astheaugmented graph [2].

Thealgorithmfor adaptve negative cycle detectionpresented

in Alg. 1 is anadaptatiorof Tarjan’s subtreedisassemblynethod
for negative cycle detectionin static graphs[1]. We henceforth
referto this modifiedalgorithmasthe “Adaptive Bellman-Ford al-
gorithm” or ABF algorithm,to stresghatit adaptsasolutionto the
original graphto obtainthe solutionto the constraintorrespond-
ing to thealteredgraph.

Theenhancements thebasicalgorithmarein lines2-6. This
codeinitializesthesetof active verticesto thoseinvolvedin acon-
straintviolation. By retaininginformationacrosscallsto the rou-
tine, the computationhere can be muchlessthanwhenwe start
from scratch After this, thenormaloperatiorof the Bellman-Ford
algorithmfollows. Becausef the generalityof theidea,otheral-
gorithmscanalsobe usedwith the adaptve enhancementsAlso,
in mostapplicationsijt is possiblefor the higherlevel application
to passinformationto the routinethat helpsit to find thoseedges
wherea changehasoccurred thusfurther saving somecomputa-
tion, thoughthis will not changethe overall compleity of the al-
gorithm (thecompleity is dominatedoy the actualnegative cycle
detectioncomputation).

3. COMPARISON AGAINST OTHER APPROACHES FOR
DYNAMIC GRAPHS

We comparethe ABF algorithmagainst(a) the incrementaklgo-
rithm developedin [2] for maintaininga solutionto a setof differ-

enceconstraintgreferredto hereasthe RSJMalgorithm),and(b)

amodificationof Howard's algorithm[7], sinceit appearso bethe
fastesknown algorithmto computethecycle mean.andhencecan
alsobeusedto checkfor feasibility of a system.Our modification
allows usto usethe adaptve techniqueto reducethe computation
in this algorithm.

Note thatthe RSJMalgorithmfrom [2] usesDijkstra’s algo-
rithm asits coreroutine. Thisimpliesthatit cannotin principlebe
extendedo handlemultiple changesn theway thatwe have done
with the Bellman-Ford algorithm. We have usedthe implementa-
tion of Howard’s algorithmfrom theauthorsof [7], andhave taken
into accounthe modificationssuggestety Dasdar3].

We have restrictedour attentionto sparse graphs,or bounded
degree graphs.In particular we have tried to keepthe vertex-to-
edgeratio similar to what we may find in practice,asin, for ex-
ample,the ISCAS benchmarksSuchgraphsarerelevantbecause
realcircuitstendto have propertiedik e boundedanoutandsmall
numberf inputs,whichresultin graphsof smallboundediggree.

We have implementedall the algorithmsunderthe LEDA [8]
framework for uniformity. Thetestswererun on randomgraphs,
with several randomvariationsperformedon themthereafter A
“change”to the graphunderconsideratiorinvolved either addi-
tion or deletionof anedge,or changingthe weight of an existing
edge.Wereferto suchchangesas“edge-changeperations” Note
that modifying a vertex canaffect several edges.lt is becausef
this thatwe restrictedour focusto edgechangesothatwe could
controlthenumberof changesWe usetheterm“batch-size™tore-
fer to thenumberof changesn amultiple changeupdate.Thisis a
usefulparameteto understandhe performancef thealgorithms.

Figurel shavs acomparisorof therunningtime of the3 algo-
rithms on randomgraphs.The graphsin questionwererandomly
generatedand had 1,000 verticesand 2,000 edgeseach. A se-
guenceof 10,000edgechangeoperationqasdefinedabore) was
appliedto eachof them. Eachpointin the plot correspondgo
an averageover 10 runs using randomlygeneratedyraphs. The
X-axis shawvs the batch-sizg“granularity” of changes)Note that
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Constart toal changes

Batchsize

Figurel: Comparisorof algorithmsasbatchsizevaries

Varying batch size

Figure2: Constannumberof iterationsat differentbatchsizes

the delayedupdatefeatureis not usedby algorithmRSJM which
usesthe factthatonly onechangeoccurspertestto look for neg-
ative cycles. As canbe seen the algorithmsthat usethe adaptve
modificationshenefitgreatly as the batchsizeis increasedand
even amongthese the ABF algorithmfar outperformsHoward'’s
algorithm. This is becausehe latter actually performsmost of
thecomputatiorrequiredto re-computehe maximumcycle-mean
from scratchwhichis far morethannecessary

Figure 2 shaws a plot of what happensvhenwe apply 1000
batchesof changedo the graph,but alter the numberof changes
perbatch,sothatthetotal numberof changesctuallyvariesfrom
1000to 100,000.As expected RSJ Mtakestotal time proportional
to the numberof changes.But the otheralgorithmstake nearly
constantime asthebatchsizevaries.Theoverall performancdor
theadaptve algorithmis dominateddy overheadcorrespondingo
thebookleepingoperationsBy reducingthenumberof updatesn
the adaptve computationthe run-timefor the adaptve algorithm
is almostconstant. However, as may be expected,asthe batch-
sizeincreaseasymptotically the run-time of the ABF algorithm
alsostartsto increaseandwhenthe numberof changess of the
orderof thenumberof edgesjt become®quialentto computing
negative cyclesfrom scratch.

4. APPLICATIONS

In this section,we presenttwo applicationsthat make extensie
useof algorithmsfor negative-gycle detection. In addition,these
applicationsalsopresentsituationswherewe encountetthe same
dynamicgraphwith sequencesf small modifications— eitherin
the edge-weightgsec.4.1) or in the actualadditionanddeletion

[ET [D]

Benchmark i i orig.BF ABF Howard's

MCM  MCM algo.
s38417 | 1.416| 0.069| 2.71 0.29 0.66
s38584 | 1.665| 0.069| 2.66 0.63 0.59
s35932 | 1.701| 0.097| 1.79 0.37 0.09
s15850 | 1.380 | 0.057 | 1.47 0.18 0.36
s13207 | 1.382| 0.077| 0.73 0.12 0.35
s9234 1.408| 0.039| 0.57 0.06 0.11

Tablel: Run-timefor MCM computatiorfor the 6 largestiISCAS
89/93benchmarks.

of a smallnumberof edges(sec.4.2). As aresult,theseprovide
goodexamplesof thetype of applicationshatwould benefitfrom
theadaptve solutionto the negative cycle detectionproblem.

4.1. Maximum Cycle Mean computation

Thefirst applicationwe consideris the computationof the Maxi-
mum Cycle-Mean(MCM) of aweighteddigraph. This is defined
as the maximumover all directedcycles of the sum of the arc
weightsdivided by the numberof “delay” elementson the arcs.
This metric plays an importantrole in discretesystemsand em-
beddedsystemd3, 9], sinceit representshe greatesthroughput
that can be extractedfrom the system. Thereare also situations
whereit maybedesirableo recomputehis measureseseraltimes
on closelyrelatedgraphs,for examplefor the purposeof design
spaceexploration. The first extensie study of algorithmicalter
nativesfor this problemhasbeenundertaknby Dasdaret al. [3].
This study concludedthat the bestexisting algorithmin practice
for this problemappeargo be Howard’s algorithm,which, unfor
tunately doesnot have a known polynomialboundon its running
time.

To modelthis application,the edgeweightson our graphare
obtainedfrom the equationweight(u — v) = delay(e) x P —
exec-time(u) whereweight(e) refersto the weight of the edge
e : u — v, delay(e) refersto the numberof delay elements
(flip-flops) on the edge,exec_time(u) is the propagationdelay
of the circuit elementthat is representedy the vertex, and P is
thedesiredclock periodthatwe aretestingthe systentor. In other
words,if thegraphwith weightsasmentionedabore doesnothave
negative cycles,thenP is afeasibleclock for the system.We can
performabinarysearctin orderto computeP to ary precisionwe
require.This approachs attributedto Lawler [10].

Table 1 shaws the run-timesof the algorithmson someof the
ISCAS 89/93 benchmarkcircuits. In the table, |[V| is the num-
ber of verticesin the graph,|E| is the numberof edgesand|D|
is the numberof delayelements.The resultsclearly shav thatin
several cases| awler’s algorithmusingour adaptve negative cy-
cle detectiortechniqueoutperformsvenHoward'’s algorithm.We
have conducteda larger analysisof the relative performanceon
randomgraphs[9], andthe resultsshav that for a large classof
sparsegraphsthe ABF-basedalgorithmis superior

4.2. Search Techniquesfor Scheduling

A schedule of a dataflav graphon processorgonsistsof an or-
dering of the verticeson the processors.If the resultinggraph
weightedwith the executiontimesof the actorsdoesnot contain
negative cyclesasin section4.1,avalid schedulenasbeenfound.
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Example | Res.(bV+, | T Power saved
3.3V+,5V¥) SandR | ABF
5th-order | {2,2,2} 25 | 31.54% | 29.88%
ellip filt. {2,1,2} 25 | 18.26% | 16.6%
{2,2,2} 22 | 23.24% | 24.9%
{2,1,2} 21 | 13.28% | 13.28%
FIR filt. {1,2,1} 15 | 29.45% | 34.36%
{1,2,2} 10 | 17.18% | 24.54%

Table2: ComparisorbetweerABF-basedsearchandalgorithmof
SarrafzadelandRaje[11]

Sincetheunderlyinggraphis alwaysthe sameandonly the vertex
orderingimposesnew edgeswe caneasilyuseadaptve negative
cycle detectiornto performthe constrainicheckingefficiently.

We have examinedthe schedulingformulation addressedby
Sarrafzadeland Raje [11] to illustrate this. The problemis to
schedulghegraphsonafixedarchitecturavherea5V addertakes
1 unit of time to execute a2V addertakes?2 units,anda multiplier
takes either 1 unit or 2 units dependingon the application. It is
assumedhat power consumeds proportionalto V2, so schedul-
ing verticeson a 3.3V resourcereduceshe power consumption.
We have attacled this problemby first schedulingeachactoron
its own resourceandtheniteratively increasingresourcesharing
while maintaininga valid schedulétill the resourceconstraintis
met.

We have usedonly this schedulemodificationmethod namely
migrating verticesacrossprocessors.Furtherrefinementscould
take into accountheinfluencethatavery basicsearchwould have
andtry to implementsomelook-aheadAlready, theresultsmatch
andeven outperformthat obtainedin [11]. In addition,the ABF-
basednethodhasthebenefitthatit canhandleany numberof volt-
ages/processorandcanalsoeasilybeextendedo otherproblems,
suchashomogeneougprocessoscheduling[12]. Table?2 shavs
the power-savings thatwere obtainedon the examplesfrom [11].
S andR power saving indicatesthe power savings quotedin [11],
while ABF power savings refersto the resultsobtainedusingthe
ABF-basedschedulingapproachT is theoveralltiming constraint
(themaximumiterationperiodboundthatwe areaimingfor).

5. CONCLUSIONS

We have introducedan adaptve approach(the ABF algorithm)
to neggative cycle detectionin dynamicallychanginggraphs. Our
techniqueexplicitly addressethe common,practicalscenarioin
which neggative cycle detectiormustbe periodicallyperformedaf-
terintenals in which a smallnumberof changesaremadeto the
graph. We have shavn by experimentsthat for reasonableized
graphs(10,000verticesand 20,000edges)our algorithm outper
formstheincrementaklgorithmdescribedn [2] evenfor changes
madein groupsof aslittle as4-5atatime.

We have also shavn how our adaptve approachto negative
cycle detectioncan be exploited to computethe maximum cy-
cle meanof a weighteddigraph, which is a relevant metric for
mary problemsin the designand analysisof circuits and sys-
tems.We have comparedur ABF-basedVICM computatiortech-
nigueagainsthe mostefficient alternatve, which is Howard's al-
gorithm. We have shavn that the ABF-basedtechniqueoutper
formsHoward’s algorithmfor sparsegraphswhich arecommonly
foundin realcircuits.

Sincecomputingpower is cheaplyavailablenow, it is increas-
ingly worthwhile to emplogy extensive searchtechniquedor solv-
ing NP-harddesignproblemssuch as scheduling. An efficient
adaptve negative cycle detectionalgorithm can malke this pro-
cessmore profitable. We have demonstratedhis by emplg/ing
our ABF algorithmwithin the frameavork of a searchstrateyy for
multiple voltagescheduling.
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