
ADAPTIVE PLAYOUT FOR REAL-TIME MEDIA STREAMING

Mark Kalman, Eckehard Steinbach
�
, and Bernd Girod

Information Systems Laboratory
Department of Electrical Engineering

Stanford University�
mkalman, bgirod � @stanford.edu

ABSTRACT

When media is streamed over best-effort networks, a buffer at the
client protects against playout interruptions due to variations in
the data arrival rate. While the amount of protection offered grows
with the size of the client’s buffer, so does the latency that is intro-
duced. In this paper we show how adaptive media playout (AMP)
- the variation of the playout speed of media frames depending on
the condition of the channel - allows smaller buffer sizes and cor-
respondingly smaller delays for a given level of protection against
buffer underflow. We demonstrate this with the results of Markov
chain analyses and with simulations. In addition, we consider
AMP as a form of receiver-driven rate scalability, allowing clients
access to streams encoded at higher source rates than their connec-
tions would ordinarily allow.

1. INTRODUCTION

Streaming systems rely on buffering at the client to protect against
the random packet losses and delays that characterize a best-effort
network. Buffering reduces a system’s sensitivity to short-term
fluctuations in the data arrival rate by absorbing variations in end-
to-end delay and allowing margin for retransmission attempts when
packets are lost.

Buffering has drawbacks, however. While the amount of pro-
tection a buffer offers grows with its size, so does the latency that
it introduces. Latency is most noticeable to the user as pre-roll
delay, the time it takes for the buffer to fill with data and for play-
out to begin after the user makes a request. However, in streams
of live events or in two-way communication, latency is noticeable
throughout the session. Furthermore, buffering is generally only
useful as long as the mean data arrival rate at the client remains at
or above the source rate. If the rate offered by the channel is be-
low, or falls below that of the source, a buffer will soon underflow.
What the system needs, in this case, is a way to reduce the source
rate.

Adaptive Media Playout (AMP) is a client-controlled means
to do just this. AMP allows the client to flexibly adjust its data
consumption rate by varying the speed at which frames of media
are played out. For video, the client simply adjusts the duration
that each frame is shown. For audio, the client performs signal
processing in conjunction with time scaling to preserve the pitch
of the signal. Informal subjective tests have shown that slowing the�

This work has been supported, in part, by a gift from Intel Corporation,
and, in part, by the Stanford Networking Research Center.�

Now with the Institute of Communication Networks, Media Technol-
ogy Group, Technical University of Munich, steinb@lkn.ei.tum.de

playout rate of video and audio up to 25% is often un-noticeable,
and that time-scale modification is preferable subjectively to halt-
ing playout or errors due to missing data [1],[2].

In this paper we examine two applications of AMP. First, we
show that AMP, a form of rate-scalability, can allow clients to ac-
cess streams which are encoded at a higher source rate than their
connection would ordinarily allow. Second, we show how AMP
can be used to improve the inherent tradeoff between buffer un-
derflow probability and latency.

2. RECEIVER-DRIVEN RATE SCALABILITY WITH
AMP

In the absence of a widely accepted and truly efficient, fine-grained
rate-scalable codec, media content providers attempt to accommo-
date a wide range of viewer connection speeds by offering multiple
versions of stored programs, each encoded at a different rate [3].
A user requests the stream that is closest to, but does not exceed,
the available connection speed. When a user’s connection speed is
nearly, but not quite, sufficient for a particular encoding, the stream
that must be selected is at a rate and quality that does not take full
advantage of the connection that is available.

Given the ability to scale the playout rate of media data, how-
ever, the user can select a higher quality stream and reduce its ef-
fective source rate to better match the connection speed. Thus,
AMP provides the receiver with a mechanism for fine-grained scal-
ability in which picture quality can be improved at the cost of a
moderate increase in the playout duration of the streamed media
content. Fig. 1 illustrates this flexibility. In the video streaming ex-
ample shown, the server offers different versions of the same pro-
gram with a 20% difference in average rate from stream to stream.
The light gray area corresponds to the operational domain if the
receiver does not offer playout rate scalability. If, for instance,
the mean connection rate is 90 kbps, the receiver has to select the
pre-encoded stream with a mean source rate of 80 kbps. In this ex-
ample, this results in a reproduction fidelity of 32 dB PSNR. The
dark gray area in Fig. 1 shows the additional operational domain
that AMP provides. With an AMP-equipped receiver, the 100 kbps
media stream can be streamed over the 90 kbps connection with a
playout speed scaling factor of ��� kbps �
	���� kbps �
��� � . The re-
construction quality is now 34 dB PSNR, an improvement of 2dB.

Note that the adjustment of playout rates is not without prece-
dent in broadcast media. Motion pictures which are shot at ���
frames per second are shown on European television at ��� fps,
the frame rate dictated by PAL, which constitutes a speed-up of����	���� .

10 20 30 40 50 60 70 80 90 100 (kbps)

25 kbps
32 kbps
40 kbps

50 kbps

64 kbps

80 kbps

100 kbps

PSNR

34 dB

29 dB

26 dB

27 dB

28 dB

33 dB

30 dB

31 dB

32 dB

Constant playout speed

Scaled playout speed

Server bit rates

Fig. 1. Allowable server bit rates and the corresponding PSNRs as
a function of the available channel rate, with and without AMP.

3. LATENCY REDUCTION WITH AMP

In Section 1 we noted the tradeoff between latency and protection
against buffer underflow: both increase with buffer size. In this
section we explain how AMP can improve this tradeoff in three
distinguishable modes of use. For a more detailed description of
these modes please see [4].

The first mode, AMP-Initial, aims to reduce pre-roll delay. In
this mode, the client begins playout of a stream before the playout
buffer has been filled to its target level,

���������	�
. Playout begins at

a reduced rate, however, with frame-periods stretched by a scal-
ing factor
�� 	 . Thus, the mean arrival rate of data out paces
the mean consumption rate, and the buffer slowly fills. When the
buffer backlog reaches its target level, playout resumes at normal
speed.

In the second mode, AMP-Robust, whenever the playout buffer
backlog dips below a threshold level

� ��
	�����
, the playout rate is

reduced. When the backlog regains the threshold level, playout re-
sumes normally. With AMP-Robust, if the mean data arrival rate at
the client remains at the source rate but fluctuates about the mean,
slow playout periods increase the mean backlog at the client lead-
ing to more robust protection against underflow. This is desirable
for stored programs, where latency is not noticeable after the pre-
roll buffering period.

For streams of live events, or for two-way communication,
however, latency is noticeable and thus the playout buffer back-
log cannot be allowed to increase without bound. AMP-Mean,
the third mode that we distinguish, reduces playout speed when
the playout buffer backlog falls below the target level by stretch-
ing frame-periods by scaling factor
 , but it also plays faster than
normal when the backlog grows larger than some upper threshold.
During faster playout frame periods are scaled by a factor ��� 	 .
As we will see in Section 5, analysis and simulation results show
that by playing slowly and quickly, the mean buffer backlog (and
thus latency) can be held at lower mean level than would be allow-
able otherwise, for a given underflow probability.

4. SIMULATION EXPERIMENTS AND MARKOV CHAIN
ANALYSIS

We quantify the improvements in buffer underflow probability ver-
sus latency realizable with AMP using Markov chain analysis and
simulation experiments. This section is a brief review of our anal-
ysis and simulation procedures. They are described in more detail
in [4].

4.1. Channel Model

In both our Markov chain analyses and simulation experiments,
we model the channel with a two-state, Markov-modulated Pois-
son process. The channel transitions randomly between a good and
a bad state. When a packet appears at the server end of the chan-
nel, it must wait an exponentially distributed random time to be
transferred to the client. During the transfer, however, the packet
may be lost with some probability. The mean waiting times and
loss probabilities are higher when the channel is in the bad state
compared to the good state. The channel is characterized by pa-
rameters

� ����� ���������	�����	�� !��"#�$��"# %�'&�����&(*) (1)

were + signifies the good state, and , the bad.
�(�

and
��

are
the mean arrival rates,

" �
and

"
are the mean channel state du-

rations, and
&(�

and
&(

are the packet loss probabilities. � �������
specifies the one-way propagation time between server and client
that is incurred in addition to the waiting time. The channel re-
mains in the good and bad states for random holding times that are
distributed according to -�. & � 	�� " �) and -�. & � 	�� ") , respectively.

4.2. Streaming System Model

In our simulation experiments we incorporate the channel model
described above into the system shown in Fig. 2. Our system
model consists of a source, a server, a channel, and a client. It
operates as follows.

The source generates frames and passes them to the server. If
the source is a live program, throughout the streaming session it
passes a new frame to the server every �0/ seconds. If the source is
a stored program, all of the frames are transferred to the server at
the start of the session. Once frames are transferred to the server,
they are each placed in a packet and added to the transmission
queue (TX Queue). A copy of each packet is saved in the packet
store for later retransmission if necessary. The server also con-
tains a queue of packets for which retransmission requests have
been received (RTX Queue). The packets in this queue are sorted
according to playout deadline.

The channel services these queues with priority given to pack-
ets in the RTX Queue since these packets are nearer to their play-
out deadlines. The random inter-service times are distributed as
described in Section 4.1. When packets cross the channel they are
placed in the client’s playout queue.

After playout begins, the playout queue is serviced determinis-
tically at a rate 12�'3) , which is constant during non-adaptive play-
out, and varies with 3 , the number of packets in the queue, dur-
ing adaptive playout. When a packet arrives at the client with
a non-contiguous sequence number, the client assumes that any
missing packets have been lost. The client places retransmission
requests for the missing packets into the retransmission request
queue (RTX Req.). The service times for this queue are the same

as in the forward direction. We assume that the retransmission re-
quests are never lost with the rationale that since the requests are
much smaller than frames of media, they can be adequately pro-
tected. After a fixed propagation delay, the retransmission requests
arrive at the server where the appropriate packet is fetched from the
packet store and placed in the retransmission queue.

By simulating this system, we can find mean pre-roll times,
mean latencies and buffer underflow probabilities given a set of
channel parameters and an adaptive playout policy. Below we de-
scribe how we find the same results using Markov chain analysis.

Source

tprop

propt����
���� �� ���� 		

����
� λ

λ

p

RTX Queue

TX Queue Playout Queue
s

 s

s

n

µ(n)

RTX Req. Queue

Server ClientChannel

G B

packet store

Fig. 2. Streaming video system model

4.3. Markov Chain Analysis

To perform Markov chain analysis, we define a finite state space
describing all the possible states of the system and then find the
probabilities of transitioning between each pair of states from one
discrete time step to the next. The steady state probability distribu-
tion over the states of the system can then tell us the quantities we
seek, namely the mean backlog in the server and playout queues
(latency) and the probability of the playout queue backlog being
zero when a packet is needed for playout (underflow). Similarly,
we can find values for mean pre-roll delay. For more detail please
see [4].

To perform Markov chain analysis we must simplify the sys-
tem shown in Fig. 2, however [5]. The number of states needed
to characterize the system in Fig. 2 would be too large to allow a
tractable analysis.

To sidestep this problem we observe that for reasonable packet
loss rates (typically � � � �), after a few retransmission attempts
the probability that a packet is received is nearly 	 . With a play-
out buffer that is significantly longer than a round-trip time, our
system will behave very similar to an erasure channel with an un-
limited number of retransmissions allowable for each packet. We
can thus model packet loss as a reduction in throughput [6]. Fig. 3
illustrates the simplified system that we assume in our analysis.
Let parameters of the simplified channel model be:�� ��� �� � � �� ��" � ��") (2)

where
�� � � � 	�� & �)�� � � , and

�� � � 	�� &)�� � . Also note
that we have dropped � ���0��� as it does not affect our analysis to
assume � ������� � � .

Source

propt

nλ s

µ(n)G B

TX Queue Playout Queue

Server Channel Client

ps(1−)

Fig. 3. The simplified streaming video system model. To allow a
tractable Markov chain analysis, we translate the packet loss rate
into a reduction in packet arrival rate.

5. RESULTS

Markov chain analysis and simulation results show the extent to
which AMP can reduce latency for a given playout buffer under-
flow probability. In Fig. 4, we see a plot of Mean Time Before
Buffer Underflow (MTBBU, a function of the underflow probabil-
ity) versus the mean latency for three slow-down factors
 paired
with three speed-up factors � . This is an example of AMP-Mean,
where the stream is a ‘live’ program and it is therefore desirable
to minimize latency - the mean time between live actions and their
appearance at the receiver - for a given MTBBU. We see that for
a fixed MTBBU, AMP-Mean reduces latency by 25-30% for these
channel parameters.

Fig. 5 answers the question: given a stored program of a given
length, what pre-roll delay is required so that the underflow proba-
bility is less than �
� �
	 ? It plots mean pre-roll time versus program
length, such that the program plays to completion without under-
flow � � % of the time. The results are for a system that combines
AMP-Initial with AMP-Robust. For a given program length, the
client buffers

��� �����0�
frames before playout begins. The frame pe-

riods during playout are stretched by a scaling factor
 , however,
whenever the backlog in the buffer falls below

� ��
	����� � 	���� .
Since the normal frame rate of the simulated system is 10 fps,
throughout the playout of the program, whenever less than 	��
seconds of data are available in the playout buffer, the playout
speed is reduced. For these channel parameters, � ������� � 	�� ms,��� � 	�� ����� � ,

�� � � � � ��� , "#� � � � s,
"# � � s,

&(� � �
��	�� ,
and

& � ��	�� , we see that the necessary pre-roll delays with AMP
can be a fraction of would otherwise be required.

6. CONCLUSION

In this work we have explored adaptive media playout (AMP) as
a means to scale the source rate of a media stream at the receiver.
We have shown two distinct ways to make use of this flexibility.
First, AMP can allow users to access streams that are encoded at a
source rate that is greater than their connections would ordinarily
allow. Second, AMP can improve the tradeoff between buffering-
induced latency and underflow probability. We have outlined the
simulation models and Markov analysis that we have used to quan-
tify improvements in this tradeoff, and our results show that AMP
can lead to pre-roll times that are a fraction of what they would be
otherwise, and to reductions of ��� - � � % in mean latency for live

0 1 2 3 4 5 6 7 8

10
0

10
1

10
2

10
3

Mean Latency in seconds

M
T

B
B

U
 in

 m
in

ut
es

s = 1.5, f = .5

s = 1.25, f = .75

s = 1.0, f = 1.0

simulation results

analytical results

Fig. 4. Mean Time Between Buffer Underflow (MTBBU) vs.
Mean Latency for a channel

�
characterized by � ������� � 	�� ms,��� � 	 � � � � , �� � � ,

"#� � � ��� � s,
"# � 	�� � s,

&(� � ��	�� � , and& � 	 .

streams.

7. REFERENCES

[1] E. G. Steinbach, N. Färber, and B. Girod, “Adaptive Play-
out for Low Latency Video Streaming,” Proc. International
Conference on Image Processing (ICIP-01), Thessaloniki,
Greece, Oct. 2001.

[2] Y. J. Liang, N. Färber, and B. Girod, “Adaptive Playout
Scheduling Using Time-scale Modification in Packet Voice
Communication,” Proc. ICASSP ’01, Salt Lake City, May
2001.

[3] A. Lippman, “Video coding for multiple target audiences,”
Proc. Visual Communications and Image Processing ’99,
vol. 3653, pp. 780-782, Jan. 1999.

[4] M. Kalman, E. Steinbach, and B. Girod, “Adap-
tive Media Playout for Low Delay Video Stream-
ing over Error-Prone Channels,” IEEE Transactions
on Circuits and Systems for Video Technology, Spe-
cial Issue on Wireless Video, submitted August 2001.
http://www.stanford.edu/˜mkalman

[5] M. Podolsky, S. McCanne, and M. Vetterli, “Soft ARQ for
layered streaming media,” Tech. Rep. UCB/CSD-98-1024,
University of California, Computer Science Division, Berke-
ley, CA, Nov. 1998.

[6] S. Lin, D.J. Costello Jr., “Automatic repeat request error con-
trol schemes”, IEEE Commun. Mag., vol. 22, no. 12, Dec.
1984.

[7] G.J. Conklin, G.S. Greenbaum, K.O. Lillevold, A.F. Lipp-
man, and Y.A. Reznik, “Video coding for streaming media
delivery on the Internet,” IEEE Transactions on Circuits and
Systems for Video Technology, pp. 269 - 281,vol. 11, no. 3,
March 2001.

10
1

10
2

1.5

2

2.5

3

3.5

4

4.5

P
re

−
R

ol
l T

im
e

in
 s

ec
on

ds

Program Length in seconds

s = 1.0
s = 1.125

s = 1.25

s = 1.375

s = 1.5

Fig. 5. A plot of the mean required pre-roll time as a function of
program length so that

�����
underflow � � ��� �
	 for a combination

of AMP-Initial and AMP-Robust.

[8] Y.J. Liang, E.G. Steinbach, and B. Girod, “Real-time Voice
Communication over the Internet Using Packet Path Di-
versity,” Proc. ACM Multimedia 2001, Ottawa, Canada,
Sept./Oct. 2001.

[9] M.C. Yuang, S.T. Liang, and Y.G. Chen, “Dynamic Video
Playout Smoothing Method for Multimedia Applications,”
Multimedia Tools and Applications, vol. 6, pp. 47-59, 1998.

[10] A. Stenger, K. Ben Younes, R. Reng, and B. Girod, “A
new error concealment technique for audio transmission with
packet loss,” Proc. EUSIPCO ’96, Trieste, Italy, Sept. 1996.

[11] W. Verhelst and M. Roelands, “An overlap-add technique
based on waveform similarity (WSOLA) for high quality
time-scale modification of speech,” Proc. ICASSP ’93, pp.
554-557, April 1993.

