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ABSTRACT

A method for the minimax design of quadrantally symmet-
ric 2-D IIR filters with guaranteed stability is proposed. The
design problem is solved by formulating an objective func-
tion in the semidefinite programming framework using a
linear approximation for the transfer function. The issue of
filter stability is addressed by converting the stability con-
straints into linear matrix inequalities based on the well-
know Lyapunov stability theory.

1. INTRODUCTION

A great deal of research on the design of one- and two-
dimensional (1- and 2-D) digital filters has been carried out
in the past [1]-[3]. The design of 2-D IIR filters presents
two additional challenges over and above the design of 2-D
FIR filters. First, while 2-D FIR filters are inherently stable,
the stability of 2-D IIR filters is fairly difficult to formulate
in a manner suitable for constrained optimization. Second,
since the transfer functions of IIR filters are rational func-
tions, the degree of nonlinearity involved in their design by
optimization is considerably higher than that for FIR filters.

In this paper, we develop a method for the minimax de-
sign of IIR quadrantally symmetric 2-D filters with guaran-
teed stability. The method is essentially a sequential min-
imization algorithm and is as follows. At the kth itera-
tion a linear approximation for the transfer function is ob-
tained using its Taylor expansion. In this way, an objec-
tive function can be deduced which is an upper bound of
the approximation error in the frequency range of interest.
The objective function is then minimized subject to several
constraints. These constraints include a stability constraint
and constraints on the filter’s maximum passband ripple and
minimum stopband attenuation. The stability constraint is
converted into a linear matrix inequality (LMI) and it is
shown that each iteration of the design can be performed
using semidefinite programming (SDP). A design example
is included to illustrate the proposed method.

2. LINEAR APPROXIMATION FOR TRANSFER
FUNCTION

Consider a quadrantally symmetric 2-D IIR digital filter whose
transfer function is given by

H(z1, z2) =
B(z1, z2)

A(z1)A(z2)
(1)

where

B(z1, z2) =
n∑

i=0

n∑
k=0

bikz−i
1 z−k

2

and
A(z) =

r∑
i=0

aiz
−i, a0 = 1

Because the filter is quadrantally symmetric, we have bik =
bki. Consequently, there are only r + (n + 1)(n + 2)/2
variables in (1), which form a [r + 0.5(n + 1)(n + 2)]-
dimensional vector

x = [a1 · · ar b00 · · bnn b10 b20 b21 · · bn0 · · bn,n−1]T

Denote vector x in the kth iteration as xk and the frequency
response of the filter for x = xk as H(ejω1 , ejω2 , xk). In
the vicinity of xk, the design variable can be expressed as

x = xk + δ

As in the approach used in [4] for the 1-D case, the fre-
quency response can be approximated in terms of a linear
function of δ as

H(ejω1 , ejω2 , x) ≈ H(ejω1 , ejω2 , xk) + gT
k δ (2)

where gk is the gradient of H(ejω1 , ejω2 , x) for x = xk,
i.e.,

gk = ∇H(ejω1 , ejω2 , xk)
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From (1), the gradient vector can be evaluated as

∂H

∂xi
=




− H
A1

e−jiω1 − H
A2

e−jiω2 for 1 ≤ i ≤ r

1
A1A2

e−ji(ω1+ω2) for r + 1 ≤ i ≤ r + n + 1
1

A1A2
[e−j(lω1+mω2) + e−j(mω1+lω2)] otherwise

where H, A1, A2 denote the values of H(ejω1 , ejω2),
A(ejω1), and A(ejω2) evaluated at x = xk = [x1 x2 · · · xi

· · · xn]T , respectively.

3. DESIGN ALGORITHM

3.1. Semidefinite Programming

An SDP problem can be formulated in several ways. For the
purpose of filter design, the formulation

minimize cT x

subject to F(x) � 0

F(x) = F0 +
n∑

i=1

xiFi

where c ∈ Rn×1, Fi ∈ Rn×n for 0 ≤ i ≤ n are con-
stant matrices with Fi symmetric, and F(x) � 0 denotes
that F(x) is positive semidefinite turns out to be conve-
nient. Note that the constraint matrix is affine with respect
to x and that SDP includes both linear and convex quadratic
programming as special cases. More importantly, many
interior-point methods that have proven efficient for linear
programming have recently been extended to SDP [5]–[7].
Efficient and user-friendly software implementations of var-
ious SDP algorithms are available, for example, the LMI
Control Toolbox [8], which works with MATLAB.

3.2. Problem Formulation

The minimax design can be obtained as the solution of the
constrained optimization problem

minimize
x

[maximize
(ω1,ω2)∈Ω

e(ω1, ω2, x)] (3a)

subect to: H(ejω1 , ejω2 , x) represents a stable filter
(3b)

where

e(ω1, ω2,x) =

W (ω1, ω2)|H(ejω1 , eeω2 ,x) − Hd(ω1, ω2)|2 (3c)

Ω = {(ω1, ω2) : −π ≤ ω1, ω2 ≤ π}, Hd(ω1, ω2) is
the desired frequency response, and W (ω1, ω2) ≥ 0 is a
weighting function. The problem in (3) can be reformulated
as

minimize µ (4a)

subject to: e(ω1, ω2,x) ≤ µ for (ω1, ω2) ∈ Ω (4b)

H(ejω1 , ejω2 ,x) represents a stable filter (4c)

where µ is treated as an additional design variable. By us-
ing the linear approximation for H(ejω1 , ejω2 ,x) in (2), we
can write

e(ω1, ω2,x) ≈ δT Qkδ + 2δT qk + ck (5a)

where

Qk = W (ω1, ω2)�e(ḡkgT
k ) (5b)

qk =

W (ω1, ω2)�e{[H(ejω1 , ejω2 ,xk) − Hd(ω1, ω2)]ḡk}
(5c)

ck = e(ω1, ω2,xk) (5d)

and the constraint in (4b) can be approximated as

(µ − 2δT qk − ck) − (Q
1
2
k δ)T (Q

1
2
k δ) ≥ 0 (6)

for (ω1, ω2) ∈ Ω where Q
1
2
k is the asymmetric square root

of Qk. It can be readily shown that (6) holds if and only if

Φk(ω1, ω2) =

[
I Q

1
2
k δ

δT Q
T
2
k µ − 2δT qk − ck

]
� 0 (7)

for (ω1, ω2) ∈ Ω. If we denote the complex-valued gradient
vector as gk = gkr + jgki, then (5b) leads to

Qk = W (ω1, ω2)(gkrgT
kr + gkigT

ki) = GT
k Gk (8a)

where

Gk = W
1
2 (ω1, ω2)[gkr gki]T (8b)

and (7) becomes

Φk(ω1, ω2) =
[

I Gkδ

δT GT
k µ − 2δT qk − ck

]
� 0 (9)

for (ω1, ω2) ∈ Ω. From (8) and (9) it is evident that Φk(ω1, ω2)
is a 3 × 3 symmetric matrix.

In the kth iteration the optimization problem in (4) can
be formulated as

minimize ĉT δ̂ (10a)

subject to: Sk � 0 (10b)
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H(ejω1 , ejω2 ,x) represents a stable filter (10c)

where

ĉ =




1
0
...
0


 , δ̂ =

[
µ
δ

]
(10d)

and

Sk = diag{Φk(ω(1)
1 , ω

(1)
2 ), . . . , Φk(ω(L)

1 , ω
(M)
2 } (10e)

with {(ω(l)
1 , ω

(m)
2 ) for 1 ≤ l ≤ L, 1 ≤ m ≤ M} being a

set of frequencies in the frequency region of interest.

3.3. Stability Constraints

The stability constraint in (10c) needs appropriate treatment
to make it tractable for numerical optimization. Denote the
vectors formed from the first r components of xk + δ by
ak + δ1. Since the denominator of H(z1, z2) is separa-
ble, it can be shown [9] that the IIR filter with coefficient
vector xk + δ is stable if and only if the magnitudes of the
eigenvalues of matrix

Dk =
[−(ak + δ1)T

Îr

]

are all strictly less than one, where Îr denotes a matrix of
size r× (r + 1) obtained by augmenting the identity matrix
with a zero column on the right. In such a case, Dk is said
to be a stable matrix. Applying the well-known Lyapunov
theory [9], one concludes that matrix Dk is stable if and
only if there exists a positive definite matrix P such that

P − DT
k PDk � 0 (11)

where M � 0 denotes that matrix M is positive definite.
It can be readily verified that the matrix inequality in (11)
holds if and only if [

P−1 Dk

DT
k P

]
� 0 (12)

To assure a stability margin for the IIR filter, the constraints
in (12) are modified as

Yk =
[
P−1 − τIr Dk

DT
k P − τIr

]
� 0 (13)

where τ is a positive scalar that controls the stability margin
of the filter.

The problem in (10) can now be converted to

minimize ĉT δ̂ (14a)

subject to:

[
Sk 0
0 Yk

]
� 0 (14b)

From (7), (10), and (13), we see that matrices Sk and
Yk depend on vector δ̂ affinely. The matrix P in (13) is not
considered as design variable. Rather, this positive definite
matrix is fixed in each iteration and can be obtained, for
example, by solving the Lyapunov equations

P − D̂T
k PD̂k = I (15)

where

D̂k =
[−aT

k

Îr1

]

It is well-known [9] that if the IIR filter with coefficient vec-
tor xk is stable, then the solution of the equation in (15) is
unique and positive definite.

With P fixed in Yk, the minimization problem in (15)
is an SDP problem of size 1 + r + 0.5(n + 1)(n + 2).

3.4. Design Steps

Given the order of the IIR filter (n, r) and the desired fre-
quency response Hd(ω1, ω2), the proposed design method
starts with an initial point x0 that corresponds to a stable
design obtained using a conventional method. For exam-
ple, one can design an FIR filter of order n to approximate
Hd(ω1, ω2) and simply set A(z1) ≡ 1 and A(z2) ≡ 1 as
the initial design. With this x0, a positive definite matrix P
can be obtained by solving the Lyapunov equation in (15),
and quantities Gk, qk, and ck can be evaluated by using (5)
and (8). Next the SDP problem in (14) is solved. The so-
lution obtained δ̂

∗
= [µ∗ δ∗T ]T can be used to update x0

to x1 = x0 + δ∗. The iteration continues until ||δ∗|| is less
than a prescribed tolerance ε.

4. A DESIGN EXAMPLE

The proposed method was applied to design several types
of 2-D IIR filters, including circularly symmetric lowpass,
highpass, and bandpass filters, and diamond-shaped low-
pass filters. The design example presented here is a diamond-
shaped lowpass filter of order (n, r) = (20, 16) with
normalized passband and stopband edges ωp = 0.8π and
ωa = π, respectively. The desired frequency response was
assumed to be

Hd(ω1, ω2) =
{

e−j12(ω1+ω2) for (ω1, ω2) in passband
0 for (ω1, ω2) in stopband

The weighting function used was

W (ω1, ω2) =

{
1 for (ω1, ω2) in passband and stopband

0 for (ω1, ω2) elsewhere

The initial design was obtained by designing a 2-D FIR fil-
ter of order (20, 20) using the singular-value decomposi-
tion method [10] and setting A1(z1) ≡ 1 and A2(z2) ≡ 1.
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To implement the proposed algorithm, a total of 1098 fre-
quency points that were uniformly distributed in the pass-
band and stopband were used in the LMI constraints Sk �
0. The SDP involved in the design was implemented using
MATLAB LMI Control Toolbox [8]. With ε = 0.75×10−4,
it took the algorithm 55 iterations to converge to a solution.
The amplitude response and the passband group-delay char-
acteristic are depicted in Fig. 1. From the figure, it is ob-
served that an approximately equirriple frequency response
with an approximately constant passband group delay have
been achieved. The passband ripple was found to be 0.0312
dB and the stopband attenuation was 36.05 dB. The maxi-
mum pole magnitude was 0.8661.
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Fig. 1. (a) Amplitude response and (b) passband group-
delay characteristic.

5. CONCLUSION

A method for the minimax design of IIR 2-D digital filters
has been presented. The method is based on a sequential
application of minimizing a linear approximation of the ob-
jective function using SDP. It has been demonstrated that the
algorithm converges quickly to a solution and yields a filter
with satisfactory performance and guaranteed stability.
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