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ABSTRACT

This paper analyzes the tonal behavior of an adaptive
second-order sigma-delta modulator, which was developed
and published by the same authors. Idle channel tones,
caused by non-white quantization error, is not desirable in
applications where the human ear is the end receiver.
Besides their relatively small magnitude tones in the
baseband, most sigma-delta modulators produce high-
powered tones near f/2. It is a more serious problem
because the clock noise near £/2 can couple these tones
down into the baseband. Various simulations show that the
more randomized nature of the aforementioned adaptive
architecture makes it more advantageous in tonal behavior,
particularly attractive in that it significantly reduces the
dominant tone near f/2, which can not be reduced by
dithering in a standard second order single-bit modulator,
With comparison to the standard second-order sigma-delta
modulators, the results are illustrated in both frequency
and time domains.

1. INTRODUCTION

Sigma-delta modulators (ZAM) have been extensively used
in quality audio applications due to their high resolution
and relatively simple analog implementation [1]. However,
the tonal behavior of most sigma-dela modulators for dec
inputs, can be a problem in A/D or D/A conversions,
especially when the end receiver is the human ear, which is
very sensitive to certain coloration and periodicity in
sound [2]. Idle channel tones, also referred to as pattern
noise, are caused by non-white quantization neise, which
is typical for sigma-delta modulators, in which one-bit
quantizers are often chosen [3]).  Various dithering
techniques have been effective in whitening the pattern
noise with different amounts of degradation in dynamic
range [4].

While the baseband tones have relatively small
magnitudes, the tones near £/2 contain much higher power.
It is more serious a problem because even a small amount
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of clock noise near £/2 can couple these tones down to the
baseband. These high frequency tomes of a standard
second-order single-bit sigma-delta modulator can be more
troublesome because they do not respond to dithering [2].
Nevertheless, the unique architecture with Adaptive
Integrator Bounding (AIB) in [5] shows significant
reduction in the dominant tone near f/2, which can greatly
degrade the performance of an audio system when coupled
down to the baseband. Extensive simulations of various
inputs have been done to verify this statement, with the
comparison to the standard normalized second-order
structure. The results are shown in both frequency domain
(power spectrum) and time domain (short-term
autocorrelation. }

The paper is organized as follows: Section 2 reviews the
AlB architecture and its contribution to whitening the
quantization error, which is a benefit that comes with the
main original advantage: the extended full-scale dynamic
range. Section 3 analyzes the tonal behavior of the AIB
architecture, focusing on the effect of the high-powered
tones near f5/2. Simulation conditions and results are
included in Section 4 followed by the conclusion.

2. The AIB ARCHITECTURE
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Figure 1 Second order ZAM with AIB

The original idea of the AIB algorithm is to extend the
practical dynamic range to full scale in a second order
single-bit modulator, while the standard structure has
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dramatic premature reduction in SNR at large inputs. The
degradation in the performance is caused by the
overloading effect of the non-linear 1-bit quantizer, and it
practically degrades the dynamic range from the full scale
by 2~3dB. Shown in Figure 1 is a normalized second-order
single-bit modulator with the AIB algorithm [6]. The
detailed discussion of AIB can be found in [5,6] and this
paper mainly describes the advantages of the AIB
architecture with emphasis on its more randomized nature,
which leads to its contribution to whitening the
auantizaiton error.
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Figure 2 Standard Second-Order ZAM

The difference between the AIB structure and a standard
second-order sigma-delta modulator (SSD), shown in
Figure 2, is that the AIB architecture has an additional
feedback coefficient P(n) (stands for the signal ‘beta
control’) through the multipoint switch, is added to the
input node. The input of the first integrator fb(n) in the AIB
scheme becomes

)= x(n)+(Bn) -)y(n) M
instead of the fb(n) in the SSD
Jo(n) = x(n) - y(n) @

The compensation is done in digital form at the output. It
can be viewed as a pre- and post- processing appended to
a SSD system without changing the functionality of the
modulator, provided that the digital subtraction matches
the analog addition [6].
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Figure 3 Prob. density of e(n) in AIB

By dynamically controlling the feedback coefficient of the
first integrator, the AIB algorithm effectively bounds the
upper limit of the integrator outputs, extends the non-
clipping input level to its full scale. In addition to these
advantages in general performance, it had been noticed in
[5] that the AIB has more whitening quantization noise
than that of the standard structure, and it will be discussed
in the next section.

3. TONAL ANALYSIS

Idle channel tones or pattern noise, of which the spectrum
contains discrete tones, noise, is caused by the non-white
quantizaton noise. In spite of the fact that Bennet’s
theorem has been widely used in simplifying the system
analysis of sigma-delta modulators, the additive white
noise approximation of the non-linear 1-bit quantization is

far from accurate [3]. To the contrary, the quantization error
from the sigma-delta modulation is typically not white and
usually depends on both the amplitudes and frequencies of
the input signal. In terms the input dependency of the
quantization error, the preliminary study on probability
distribution in [5], shown in Figure 3 and Figure 4, provides
an intuitive support of the earlier statement that the AIB
has a more randomized nature and is less signal-dependent
than the standard second-order sigma-delta modulator.
This study is done by using a group of sinusoid inputs at
same frequency but with different amplitudes [5].

For dc inputs, almost all single-stage sigma-delta

. modulators sound tonal. Early in the literature, there was

suggestion in [7] that the analog second or higher order
modulators will not sound tonal because the small thermal
noises are enough to whiten the quantization noise. But
more recent research has shown that the thermal noise is
not enough to whiten the colored necise. Tones have been
found even in the eighth-order modulators [2]. Various
dithering methods have been adopted to accommodate
different applications with the tradeoff being the dynamic
range. Comparisons of these methods can be found in [4].
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Figure 4 Prob. density of e(n) in SSD
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To locate the tone frequencies for a given dc input, the
following empirical equation is normally used [2]). The
tones are at

nfs |4ad

Jo=———

oA n={0,1,2,--:} €))

where f; is the sampling frequency, |A,| is the magnitude
of the dc input level and A is the interval of the 1-bit
quantizer. In consistency with the previous study, the
simulation results in the next section also shown that the
tone of n = 4 is the dominant one and remains high above
the noise floor while other baseband tones are whitened by
the small amount of thermal noise added to the input [2].

While the tones in the lower frequencies are relatively small
in magnitude, most sigma-delta modulators produce high-
powered tones near f/2 for nearly all classes of inputs. This
problem is more serious because even the slightest amount
of coupling of f/2 into the baseband can potentially
destroy the performance. Dithering does help to reduce
these tones for modulators higher than second order, but
the standard second-order 1-bit modulator showed hardly
any reduction with the presence of dithering [2]. On the
other hand, the AIB architecture has significantly reduced
these tones by its own randomized nature. Particular, it
practicaily eliminates the dominant tone near f/2, which is
typically 20~30dB above the highest point of the noise
floor. This alone will reduce the sensitivity of the aliasing
effect by 20~30dB. It will alse provides extra 20~30dB
isolation between the analog and digital sections at these
frequencies in hardware implementations [2].

For tonal analyses, it has been well known that the power
spectrum estimation alone is not sufficient to reveal the
tones that is short-term periodic in time domain, while the
human ear is sensitive to these tones. Therefore, the
autocorrelation estimation has been extensively used in
estimations of tonal behavior. For a finite-length real
sequence, the discrete-time autocorrelation is given by

O (m)= -2-% ngh’x(n)x(n +m) C))

in which ¢,(0) is the mean-square value of the sequence, or
its average power. The rest values of ¢,(m) represents the
inter-dependency of the signal to itself with m shifts in the
sequence. If the original sequence is aperiodic, ,(m) tends
toward a constant when m # 0. If the original sequence is
pure random (white) noise with zero mean, then ¢,.{m) — 0
whenm # 0. Therefore, the advantages of the AIB design
can also be shown by this effective time domain estimation,
which is also included in the following section of
simulation results.

4. SIMULATION RESULTS

This section includes the simulation resuits of both the
frequency and time domain estimation of the AIB system.
In the standard second order modulator, applying dithering
trades in the dynamic range and lowers the peak SNR [2],
but the AIB algerithm extends the dynamic range, improves
the peak SNR while it whitens the quantization error. For
the example in {5], it is about 2dB extension in the dynamic
range and 5dB improvement in the peak SNR, which is
shown in Figure 5.
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Figure § Dynamic range and peak SNR

More specific simulations are done using a dc¢ input of
1/256 (-48.16dB) to compare the tonal behavior of the
standard structure and the AIB design. The sampling rate
is chosen as 1.024MHz over a 4KHz speech band resulting
in an oversampling ratic of 256. A total power of -95.32dB
input-referred thermal noise are added to the input and no
dithering has been applied. This value is chosen to be
below the ideal dynamic range, which is 94.22dB according
to the linear model definition [5],

3 2L+1

DR= E( )(2” —1)205R2“1 (%)

?TZL

in which N is the bit-wise quantization levels(for the single-
bit quantizer, N=1), L is the order of the modulator and OSR
is the oversampling ratio. The thermal noise floor in a
practical system is usually higher but this small value is
used so that it is distinguished from non-subtractive
dithering (at least 1 LSB in general) at the input.

Figure 6 is the comparison of the power spectrum. Both
systems contain tones at n = 4, in this case, at 4KHz,
according to equation (3). The magnitude is about -91dB.
The spectra also demonstrate that the AIB does not have
the dominant tone near fs/2, but the dominant tone of the
standard structure is —9.9dB, which is about 20dB above
the highest point of the noise floor. Assuming a coupling

IV -279



coefTicient of —60dB, this largest tone will be coupled down
to the baseband of the magnitude of —69.9dB, which will
definitely destroy the performance of the modulator.

The short-term autocorrelation estimations of the

modulator outputs are shown in Figure 7. The AIB is

obviously advantageous in the time domain evaluation,
which is considered more effective in tonal analysis [2].
There is still some periodicity in the AIB design, but it
greatly outperforms the standard second-order modulator
whose pure periodic characteristic is clearly revealed in

Figure 7(a).
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Figure 7 Autocorrelation estimation
{a) Standard second-order (b} AIB

5. CONCLUSION

The tonal behavior of an adaptive second-order single-bit
sigma-delta modulator (AIB) has been discussed and
simulated, with the comparison of a standard second-order
single-bit modulator.

The frequency domain estimations show that, the tonal
behavior of the AIB and that of the standard second-order
structure -are similar in lower frequencies. But the AIB is
almost tone-free at high frequencies near f/2, while the
standard structure has a dominant tone of 20dB above the
highest point of the noise floot. This can be a very serious
problem when this tone is coupled down to the baseband
by the clock noise, which will potentially destroy the
performance of the modulator in audio applications, where
the human ear is the end receiver.

The time domain estimation also confirms the advantages
in tonal behavior of the AIB in consistency with the
frequency domain. The short-term autocorrelation reveals
that there is less periodicity in the AIB than that in the
standard modulator. This is even more convincing a result
because human ear is sensitive to short-term periodicity,
which can not always be observed from the power
spectrum,
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