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ABSTRACT

This paper studies the estimation of fast fading channel in
the present of impulse noise, Fast fading channel in wireless
communications system is typically modeled as autoregressive
(AR) process. Least-square algorithm and Kalman filter are
previously proposed for estimating the AR parameters and the
¢hannel impulse response respectively using training sequence.
The performance of these algorithms, however, is very sensitive
to impulse noise. In this paper, a robust Kalman filter and a
robust recursive least M-estimate algorithm are employed to
jointly estimate the channel impulse response and the AR
parameters of fast fading channel under impulse noise.
Simulation showed that the proposed algorithms are much less
sensitive to impulse noise than the conventional algorithms.

1. INTRODUCTION

Fast fading channel is frequently encountered in wireless
communications, causing considerable performance degradation.
The impulse response of the time-varying channel (TVC) can be
modeled as an autoregressive (AR) process [1]. Many authors
have proposed efficient algorithms for channel estimation and
equalization of the TVC using Kalman filter and Decision-
Feedback equsalizer. In [1], a least-square (LS) method is
proposed for the AR parameters estimation of the fading channel
model. A coupled estimator consisting of a Kalman filter in
parallel with a LS-based AR parameters estimator was proposed
in [2]. Several authors also considered the estimation and
equalization of MIMO channel model [3,4].

Although these algorithms work well in additive white
Gaussian noise channel, their performances can be significantly
degraded in impulse noise environment, which often appears in
communications channel. It is because both the Kalman filter
and the LS algorithm are sensitive to impulse noise, thus
affecting the accuracy of the chanmel and AR parameters
estimation. As a result, the received signal cannot be equalized
appropriately and system performance is degraded.

In this paper, a robust Kalman filter is proposed for
estimating the channel in impulse noise environment. It uses an
M-estimate [5] to identify and eliminate possible outliners which
appear in the received signal. In addition, the recursive least M-
estimate (RLM) algorithm proposed in [6] is used for estimating
the AR parameters. Simulated results showed significant
performance improvement over the conventicnal approach in
estimation and equalization of fast fading channel in impulse
noise environment.

2. CHANNEL MODEL

A model of discrete-time communications system with
single-input single-output (SISO) is shown in Fig. 1. Let s(r) be
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the transmitted signal at time ¢ and A(¢,/) be the /th tap of the

impulse response of the time-varying channel. The received
signal is given by:

o) = ﬁs(r—nh(x,!)w«), )

where w(t) is the zero-mean additive noise and L is the number
of channel taps. Normally w(r) is assumed to be Gaussian
distributed with variance 2. In practice, w(f) might consist of

impulse noise and it can be modeled as the contaminated
Gaussian noise. The time-varying impulse response of the

channel composes of a non-zero mean component 4({/) and a

Zero-mean component 7 (#,1) such that:
B D =h(D+h 1,0, @
To equalize this fast fading channel, it is usually modeled by
an AR process [1]. More precisely, the time-varying component
of the channel is formulated as:
h(ty=Fh(z - +--+F, hit= M)+u(), 3)
where F, 's for i=1...,M are the AR parameters and
h() =[#(0),....h(t,L= DI . The generating noise for the AR
process u(®) =[u(t,D,...,u{t,L -DJ is assumed to be a zero-
mean independent and identical distributed complex Gaussian
random process with known covariance o? . Assume that the
order of the AR process M is known, Let h{r)=
(W(0),...,h (=M +1),h’] be an augmented matrix of the
channel impulse respense, where the non-zero mean component
vector is defined as h =[h(0),...,A(L —1)] . Then fast fading

channel can be written in the following state-space
representation:

h{r) = Ah( - 1)+ v(¢), (4)
FF F, - F, 0
I 0 0 0
where A=l0 - P (5)
; I 0 0
0 e 0
and v(t) =[u(?),0,...,0] . (6)

Similarly, we define the input signal samples vector
$(t} = [s(D...,s(t—~L+1)]7 and the observation matrix
C) =["("0,...,0,s ()] . From which, equation (1) can be
rewritten as:
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y(£) = C(Oh(D) +w(t) . M
From (4) and (7), if the AR parameters F,’s are known, a

Kalman filter can be used to track the time-varying impulse
response of the channel. In practice, however, the AR
parameters are unknown or time-varying and thus online
estimation is required. Usually, periodic training sequence is
transmitted to the receiver to estimate the AR parameters.
Efficient algorithms have been proposed to estimate the AR
parameters using LS algorithm [1]. Data symbols are then
transmitted after the training peried. At the receiver, each data
symbol is detected using the current estimate of the channel.
Once a data symbol is detected by, say, the decision feedback
equalizer (DFE) or the Viterbi decoder, it is substituted into (7)
for the estimation of next channel estimate by the Kalman filter.
These two processes alternates until the next training peried is
reached, where the AR parameters will be estimated again.
Coupled estimator with a Kalman filter running continuously in
parallel with an AR parameters estimator was also proposed in
[2]. Other techniques include the semi-blind approach in [4]
where the training sequence is only transmitted once during
initialization.

Unfortunately, both Kalman filter and LS algorithms are
known to be sensitive to impulse noise. The accuracy of the
channel and the AR parameters estimation can deteriorate by
impulse noise coming from the communications channel, which
leads to significant degradation of system performance. In this
paper, we study a receiver that employs the robust Kalman filter
and the RLM algorithm [6-8] to perform the robust estimation of
the channel impulse response and AR parameters, respectively.

For simplicity, only SISO fading channel model is
considered in this paper. However, the proposed architecture can
be extended to MIMO fading channel models with minor
modifications similar to [3] and [4].

3. ROBUST AR PARAMETER ESTIMATION

In order to estimate the AR parameters of the fast fading
channel, the covariance matrices of the channel impulse

response R (r) = E[E(t + )" ()] are first estimated. Consider
the following conditional expectation [2]:

E[[y(s+7) = 5 + D90 - FO)I* ()] =

" 2 ®)
9" (1,0)8(r) + 0,6(7),
where
OEDIIEHTION ©
(D) =[5+ 2)s*(0),...,s(t +T)s* (¢ — L +1), (10)

oS+ =L+ Ds*(e-L+1)],
8(r) =[r; (z,0,0),..., (z,0,L - D),...,

7 (2, ) = ETR (1, DR * (¢t +T,m)] . (12)

The zero-mean component of the channel estimate hois
obtained from the robust Kalman filter during the channel
estimation process. Equation (8) enables us to estimate 8(7),
the channel tap covariance vector, from which we can estimate
the AR parameters by solving the Yule-Walker equations in the
AR parameters F,’s [9]. To proceed further, the expectations

r(r,L-LL-DI, (11)

involved are approximated by their instantaneous values. That
is:

[y +2) =3+ DO -FOI* =" (1,78 () + 035(r) . (13)
The channel tap covariance vector 0(r) can be obtained
recursively using the LS algorithm for different z .

Although the LS algorithm is very efficient in estimating the
AR parameters, its performance can be degraded significantly in
the presence of impulse noise [7]. In this paper, the RLM
algorithm is used to minimize the effect of impulse noise to the
AR parameters estimation.

The RLM algorithm minimizes an M-estimate-based

objective function instead of the conventional LS objective
function [7]:
VAOED WA CO (14)
i=l
where A is the forgetting factor and p(-)is a modified Huber
M-estimate function (MHF) given by [10]:

w2 iflenf<a

a2 if |e(r) 2 A (s

P(e(t))={
The function p(-} is quadratic when the error e(f) is
smaller than the threshold A . Otherwise, the function is a
constant. Other M-estimate such as the Hampel three parts
redescending function can also be used. Only MHF is considered
in this paper because of its reasonable good performance and
simplicity. It is apparent that the MHF is able to suppress
outliners whenever e{t) has abnormally large magnitude. The
threshold A depends on the probability to detect the outliners
and is estimated continuously.
The optimal solution h(r) for minimizing J (f} can be

obtained by differentiating (14) with respect to h(f) and setting

the derivatives to zero. Its application to the estimation of the
AR parameters using (9)-(13) is shown in Table 1. The RLM
algorithm is similar to the RLS algorithm except for the weight
function g(-) = 8p(e)/de which is given by:

1 if|e() <A

0 if |e() 2 A 18

gle(r)) = {
If le(l)| is great than A , the Kalman gain vector K(f) is

equal to zero and the abnormal estimation error is prevented
from entering the channel estimates. To estimate the threshold
A, for simplicity, e(r) is assumed to consist of a Gaussian

process that corresponds to the ‘impulse-free” error signal and an
impulsive component. Suppose the variance of the ‘impulse-

free’ error signal &(f) is &, , the probability of |e(t)| > Ais [8]):

£, =Prfe(n] > A= l—erf[ ,/'ZA& ] a7

where Pr() is the probability operator, erf(-) is the error

function and &, is the variance of e(f) . By choosing different
values of &, , we have different confidence in detecting the

_ presence of impulses. In this paper, ¢, is chesen as 0.01 and the
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corresponding threshold is A =2.576&, . That means there is
99% confidence to reject the outliners when |e(t)| >A.

The value of &2 can be updated recursively by [6]:

G2 = 2,62 +(1~ 4)emed(¥(1)), (18)
¢, =1.483(1+5/(N, - 1)), (19)
P() = (). (- N, + 1)| . (20)

Note that the median filter med(:) is used to prevent the
impulses from affecting 67 . The window size of the median
filter is a compromise between the ability to response to sudden

change of system transfer function and robustness to consecutive
impulses. For a window length of N, the median filter is
robust to [N, /2] consecutive impulses. In practice, N, can be
chosen between 5 to 11. A window length of 9 is chosen in this
paper.

The convergence analysis of the RLM algorithm can be
found in [10]. As we shall see later in the simulations section,
the RLLM algorithm is very effective in suppressing the adverse
effect of the impulses, which otherwise might ruin the entire
training process.

Initial conditions:
0(r)=10
P(0)=671, & =smallpositive constant
Foreach t =12,... and + =0... M, compute:
e(?) = [yt +7) =t + D]y - ¥(O)]* " (1,70 (1,7)
K() = g(e(n))- P(e = Do, 1) A + 0" (1,2)P(t ~ Dop(t, 7)]"
0(r,r) =001} +K()e(r)
P() = ' =K(Oe" (L. DIP(-1)
Table 1. Robust AR parameters estimation algorithm.

4. ROBUST CHANNEL ESTIMATION

Assume that the matrix A has been estimated by the RLM
algorithm as described in section 3. A robust Kalman filter as
shown in Table 2 can be used to estimate the channe! response
by means of the state-space model in {(4)-(6). C(t) is derived
from the decoded symbols during data transmission. The robust
Kalman filter in Table 2 differs from the conventional Kalman
filter in updating the Kalman gain:

K(1) = q(e(t) - P | = DCT OICOP( |1 -DCT (D +a1,] ",

1)
I 0 0

where I, = 0 I 0 (22)
0 -~ 0 0

A weight function g() as defined in {16) is included and it

serves the same purpose as the RLM algorithm to prevent the
Kalman gain from being corrupted by impulses with abnormally
large amplitude. The estimation of the threshold A is similar to
the one described in section 3. Simulation results in section 6
showed that the proposed robust Kalman filter is less sensitive to
impulse noise than its conventional counterpart. During the
training period, the matrix C({f) is known. The estimated

channel ﬁ(t) is fed to the AR parameters estimator. After the

training period, C(#) is replaced by its estimate é(!) , which is
obtained from the DFE or Viterbi decoder.

Initial conditions:

h(©)=0

P(0)=6""I, & =smallpositive constant

For each t=12,..., compute:

e(f) = y(t) - C(Oh{t | 1-1)

K(1) = q(e(r) - P(t | t = DCTD[COP( | - YCF () + LT
Pz |0 = AT -K@OCEHPE | =1

P(t+1|0)= AP | NHAY + X,

h(| 0 =h(t| -+ K@e)

B +110 = Akt |0

Table 2. Robust channel estimation algorithm.
5. THE PROPOSED ALGORITHM

Without loss of generality, we only consider a semi-blind
recursive coupled estimator in this paper. However, the proposed
robust algorithms are also applicable to the periodic re-training
cases.

During initialization, the training sequence is transmitted and
thus the transmitted symbols s{f) are known. The robust
Kalman filter and the RLM algorithm use the training sequence
to estimate the channel and the AR parameters respectively.
After the training period, the system operates in the blind mode.
A DFE is used to detect the transmitted data symbol. The
detected symbols §{(¢) are then fed back to the coupled estimator
to estimate the channel and AR parameters again. Fig. 2 shows
the block diagram of the channel estimation and equalization
processes. The proposed algorithms are summarized as follow,

5.1 Training mode

Step 1 Generate the matrix C(¢) from the known training
symbols.
Step 2:  Estimate the channel and the AR parameters using the

proposed robust Kalman filter and RLM algorithms.
5.2 Blind mode

Step 1: Decode the received signal using DFE to obtain the
decoded data symbols é(t) .
Step2: Run the robust Kalman filter and AR parameters

estimator. Update the channel using the decoded data
symbols.

6. SIMULATIONS

Simulation under impulse noise environment is performed to
evaluate the performance of the proposed robust channel
estimation and equalization algorithms. The performance of the
proposed robust algorithms is compared te the conventional
Kalman filter and LS algorithm. In our experiment, the results
are obtained by averaging over 100 independent runs. A fading
channel with length L =2 is considered, which is modeled as an
AR process with order M =1 and with mean impulse

response h =[1+0.27,-0.5+0.5;1" .
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The true AR parameters matrix F, is:
F 03 08
l-05 03

" and o’ is chosen as 0.005. The input symbols s(f) are drawn

from a 16-QAM constellation with &, =107, An initial training

period of 1000 samples is used. Both the conventional and
robust receivers start to decode the data after the training period.

To visualize more clearly the effects of the impulses, a chain
_of impulses is generated using a Gaussian distribution of

ol =200(i.e. 2 contaminated Gaussian noise modeled with the

position of the impulses fixed for clarity of presentation.) and
are placed at ¢ =1700,1810,1920,2030,2130 as shown in Fig. 3,

A and A, are chosen as 0.99 and 0.9, respectively. Fig. 4
shows the recursive estimation of the real part of F(1,1), where
F,(i,)) is the (i, /) th component of matrix F,. When there are

impulses, the performance of the conventional algorithms is
affected significantly, while the performance of the proposed
robust algotithms is not so affected by the impulses. Fig. 5

shows the recursive estimation of the real part of 5(0). The

effect of impulses on the performance of the proposed algorithm
is minimized while the performance of the conventional
algorithms is affected to a greater extent.

7. CONCULSION

The effect of impulse noise in the estimation and
equalization of fast fading channel is studied. A new robust
Kalman filter and the RLM algorithm are proposed to estimate
the channel and AR parameters in impulse noise environment,
Simulations showed that the proposed algorithms perform better
than the conventional algorithms under the stated conditions.
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Fig. 1. Fading channel model.
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Fig. 2. The proposed coupled estimator consisting of a robust Kalman
filter and an AR parameters estimator using the RLM algorithm.
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Fig. 3. Observation noise in the received signal.
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Fig. 4. Estimation of the real part of F(1,1) under impulse noise.
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Fig. 5. Estimation of the real part of ;(0) under impulse noise.

KEF: conventional Kalman filter.
RKF: robust Kalman filter.
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