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ABSTRACT

The paper analyses the nature of limit cycles induced through the
interaction of transformer tap changing and load dynamics. Lin-
earization of a Poincaré map is used to prove local stability. An
approximation is introduced which allows the map to be formu-
lated explicitly. An estimate of the region of attraction can then be
obtained.

1. INTRODUCTION

Interactions between tap-changing transformers and dynamic loads
can result in limit cycle (periodic) behavior [1]. Analysis of this
phenomenon is complicated by the discrete nature of transformer
taps. In fact, this form of interaction, between discrete and con-
tinuous states, typifies hybrid systems. This paper takes a hybrid
systems approach to analysing stability of the induced limit cycles.

2. TAP CHANGER LOGIC

Figure 1 shows a flowchart of the logic that characterizes an auto-
matic voltage regulator (AVR) of a tap changing transformer. This
device undergoes discrete changes in tap ratio when certain condi-
tions are satisfied. The AVR is driven by a number of interacting
events that govern timer behavior. The primary input is the voltage
Vm at a bus on the secondary side of the transformer. If Vm lies
within the deadband, i.e., VL < Vm < VH or the tap is at the up-
per or lower limit, the timer is blocked. When the voltage deviates
outside the deadband, the timer runs. If the timer reaches T , a tap
change occurs. Tap increases by a single step if Vm < V 0

m, and
decreases by a step if Vm > V 0

m. Once a tap change takes place,
the timer is reset.

3. SIMPLE POWER SYSTEM

The example power system of Figure 2 shall be used to explore
limit cycles induced by transformer tap changing. The system sup-
plies a dynamic reactive power load via a transformer with turns
ratio 1 : n. The dynamic load [2] is described by the differential-
algebraic model

_xq =
1

Tq
(Qs �Qd) (1)

Qd = xq +QsV
2 (2)

where Qs and Qd are steady state and dynamic reactive powers
respectively, withQs constant, xq is the load state variable, and V
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Fig. 1. Tap changer logic flowchart.
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P=0, Q=Qd

Fig. 2. Example system.

is the voltage at load bus 3. The load responds dynamically with
time constant Tq . Power balance at the load bus is given by

Qd =
V (nV0 � V )

n2x
(3)

where n 2 Q is the (discrete) tap position, andQ is the countable
set of discrete tap positions.

As the tap changing logic drives the system towards V =
V 0

m = 1, (stable and/or unstable) equilibria will exist in neigh-
borhoods of the intersections of the V = 1 and _xq = 0 curves
in xq � n space [3, 4]. For the example system, these curves are
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Fig. 3. Qualitative picture of (4) and (5).

given by,

_xq = 0 :

xq = Qs �
Qsn

2

2

�
V 2
0 � 2xQs � V0

q
V 2
0 � 4xQs

�
(4)

V = 1 : xq =
nV0 � 1

n2x
�Qs (5)

Figure 3 depicts these curves.
We will assume the following numerical data throughout the

paper: Qs = 0:515pu, V0 = 1:05pu, x = 0:5pu, Tq = 60sec,
T = 30sec. Also, it is assumed that the transformer AVR dead-
band has negligible width, i.e., VL = VH = V 0

m.
It can be seen from Figure 3 that the _xq = 0 and V = 1

curves partition the state space into distinct regions where _xq < 0
or _xq > 0, and V < 1 or V > 1 (and their possible combinations).
The curves intersect at two distinct points a and b. It follows that
trajectories in the neighborhood of a move towards a, but will not
reach a if na =2 Q. Hence, there exists an invariant region around
a, which may be a stable limit cycle. Trajectories around b do not
behave in this manner. In fact, they move away from b, ruling out
the existence of a stable limit cycle around b. Indeed, the section
of the curve _xq = 0 that includes point b is a locus of unstable
equilibria.

The focus is therefore on trajectories around a. A Poincaré
map will be used to prove the existence of a locally stable limit
cycle.

4. POINCARÉ MAPS

Poincaré map concepts can be used to determine the local stability
of limit cycles. To summarize this approach, let there be a hy-
perplane transversal to the limit cycle at an arbitrary point on it.
Trajectories originating from that hyperplane in a neighborhood of
the limit cycle encounter the hyperplane again after about tp sec-
onds, where tp is the period of the limit cycle. Thus, a Poincaré
map samples the flow of a periodic system once every period. This
sampling process can be written

xk+1 = P (xk) (6)

where P denotes the Poincaré map and xk is the kth sample point
of the flow. Differentiating (6) gives the linearized Poincaré map

�xk+1 = DP�xk (7)

where D is the differential operator. Small perturbations in xk

diminish if the eigenvalues of DP are all less than 1. In that case
the limit cycle is locally stable, as any local trajectory is attracted
to the limit cycle. Full details can be found in [5, 6].

5. LOCAL STABILITY OF TAP-CHANGER INDUCED
LIMIT CYCLE

If the equilibrium value of tap position na =2 Q, the system will
not be able to stabilize to an equilibrium point. Instead it will con-
tinually switch between tap positions n1; n2 2 Q, where n1 <
na < n2. This section assumes the existence of limit cycle behav-
ior, and uses a Poincaré map to prove local stability. Conditions
governing the existence of a limit cycle, along with global stability
issues, are presented in the later section.

The continuous dynamic behavior of the system is described
by (1)-(3). Eliminating algebraic variable V results in the form,

_xq = f(xq;n); n 2 Q: (8)

The full hybrid dynamics also involve switching of n at every T
seconds, as presented in Figure 1. The complete model can be
written in a differential algebraic impulsive switched (DAIS) form
[6]. The flow of the system may be expressed in the implicit form

� (xq; xq(0); t;n1; n2) = 0: (9)

The Poincaré map samples the trajectory every 2T seconds, since
the switching is periodic. Let xkq and xk+1

q be consecutive samples.
The map that translates xkq to xk+1

q is given by

�
�
xk+1
q ; xkq ; 2T ;n1; n2

�
= 0: (10)

Progression from xkq to xk+1
q involves the evolution of the system

(8) with n = n1 for T seconds, followed by n = n2 for a further
T seconds. Therefore (10) can be decomposed as

�0

�
xk

0

q ; x
k
q ; T ;n1

�
= 0 (11)

�0

�
xk+1
q ; xk

0

q ; T ;n2
�
= 0 (12)

where xk
0

q is the point when switching from n1 to n2 takes place.
To obtain the linearized map, (8) can be rearranged and inte-

grated over T seconds, givingZ xk
0

q

xkq

dxq
f(xq;n1)

� T

| {z }
�0(xk0

q ;xkq ;T ;n1)

= 0

Linearizing (11) gives

@�0

�
xk

0

q ; x
k
q ; T ;n1

�
@xk0

q

�xk
0

q +
@�0

�
xk

0

q ; x
k
q ; T ;n1

�
@xkq

�xkq = 0:

Therefore

@

@xk0

q

 Z xk
0

q

xkq

dxq
f(xq; n1)

� T

!
�xk

0

q +

@

@xkq

 Z xk
0

q

xkq

dxq
f(xq;n1)

� T

!
�xkq = 0

)
1

f
�
xk0

q ;n1
��xk

0

q �
1

f
�
xkq ;n1

��xkq = 0:
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Hence

�x
k0

q =
f
�
xk

0

q ;n1
�

f
�
xkq ; n1

� �x
k
q : (13)

Similarly,

�x
k+1
q =

f
�
xk+1
q ;n2

�
f
�
xk

0

q ;n2
� �x

k0

q : (14)

The complete linearized mapping is given by

�x
k+1
q =

f
�
xk+1
q ;n2

�
f
�
xk

0

q ;n2
� �

f
�
xk

0

q ;n1
�

f
�
xkq ;n1

�| {z }
DP(xk+1q ;xk

0

q ;xkq ;2T ;n1;n2)

�x
k
q : (15)

The value of DP can be explicitly calculated for the system
under consideration, as xk

0

q and xk+1
q are easily computed by nu-

merical iterations, for given xkq . For n1, n2 and xkq in a small
neighborhood around a with n1 < na < n2, DP < 1. For exam-
ple, n1 = 1:4, n2 = 1:6, xkq = 0 gives DP = 0:764 < 1. Thus,
the limit cycle around a is locally stable. Near point b, n1 = 2:5,
n2 = 2:7 and xkq = 0, resulting in a value of DP = 1:32 > 1.
Thus no stable limit cycle exists around b. This supports the earlier
conjecture.

Similar analysis is applicable to higher dimensional hybrid
system. In general though DP cannot be explicit formed, but is
obtained from trajectory sensitivities [6]. The eigenvalues of DP
i.e. characteristic multipliers, determine the local stability of the
hybrid limit cycle [5].

6. GLOBAL STABILITY OF HYBRID LIMIT CYCLE

Linearization of the Poincaré map does not allow investigation of
the region of attraction of the limit cycle. Unfortunately the im-
plicit form of (10) complicates such analysis. However by employ-
ing a reasonable approximation, xk+1

q can be expressed explicitly
in terms of xk, facilitating the desired analysis.

Equations (2)-(3) can be manipulated to give

V
2 =

�
V 2
0

nx

�2
� 2xq

�
Qs +

1
n2x

�� �V 2
0

nx

�2vuut1 � 4xq

�
Qs+

1

n2x

�
�
V 2
0
nx

�2

2
�
Qs +

1
n2x

�2 :

(16)
Using an approximation

p
1 + z � 1 + z

2
, for jzj � 1, we have

for

�����4xq
�
Qs+

1

n2x

�
�
V0
nx

�
2

������ 1, (ignoring the trivial solution V 2 = 0),

V
2 �

�
V0
nx

�2 � 2xq
�
Qs +

1
n2x

�
�
Qs +

1
n2x

�2 : (17)

Using (17), the system (1)-(3) can now be described in terms of xq
and n as

_xq = a(n)xq + b(n) (18)

where

a(n) =
1

Tq

 
Qs � 1

n2x

Qs +
1

n2x

!

b(n) =
Qs

Tq

 
1 �

 
V0
nx
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1

n2x

!2!
:
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Fig. 4. Boundaries of the approximated region and a qualitative
picture of (19) and (20).

Using the parameter values for the example system, the approxi-
mation is valid for x2q � 1:2155

(2+0:515n2)2
. Figure 4 shows the curves

x2q = 1:2155
(2+0:515n2)2

, which serve as boundaries for the region of
approximation. As the limit cycle is well within that region, the
approximated system can be used to derive conditions for limit
cycle stability.

For the approximate system, the curves V = 1 and _xq = 0 are
given by,

V = 1 :
V0

nx
= Qs +

1

n2x
(19)

) n = na = 1:516 and n = nb = 2:5616

_xq = 0 : xq = � b(n)

a(n)
=

Qs

��
V0
nx

�2 � �Qs +
1

n2x

�2��
Qs +

1
n2x

� �
Qs � 1

n2x

� (20)

Equation (19) is obtained by setting V = 1 in (17) and reusing

the approximation

����� 4xq
�
Qs+

1

n2x

�
�
V0
nx

�
2

������ 1. These curves are plotted

in Figure 4. (Compare with Figure 3.) The intersection points are
the same as before, but the curves are qualitatively different.

Consider now a system described by (18) which is an approx-
imated version of (1)-(3). For a fixed value of n, the load state
xq(t) is given by

xq(t) = � b(n)

a(n)
+

�
xq(0) +

b(n)

a(n)

�
e
a(n)t (21)

Let the tap positions be restricted to Q = fn1; n2 : n1 < n2g.
A hybrid system is obtained by switching between n = n1 and
n = n2 every T seconds. Conditions are sought on n1; n2 and
xq(0) which ensure the existence of a limit cycle that is attracting
over the approximated region. A map from xkq to xk+1

q can be
obtained using (11)-(12) and (21),

x
k0

q = � b(n1)

a(n1)
+

�
x
k
q +

b(n1)

a(n1)

�
e
a(n1)T

x
k+1
q = � b(n2)

a(n2)
+

�
x
k0

q +
b(n2)

a(n2)

�
e
a(n2)T :
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The complete mapping is

xk+1
q = �

b(n2)

a(n2)
�

�
b(n1)

a(n1)
�

b(n2)

a(n2)

�
ea(n2)T

+

�
xkq +

b(n1)

a(n1)

�
e(a(n1)+a(n2))T : (22)

The stationary point of the mapping, if it exists, is obtained by
setting xk+1

q = xkq = x�

q and is given by

x�

q =

b(n2)
a(n2)

+ [ b(n1)
a(n1)

� b(n2)
a(n2)

]ea(n2)T � b(n1)
a(n1)

e[a(n1)+a(n2)]T

e[a(n1)+a(n2)]T � 1
:

(23)
Consider the sequence

fx0q; x
1
q ; x

2
q; : : : ; x

k
q ; : : :g: (24)

In general, xkq may be expressed, after some manipulations, as

xkq = x�

q +
�
x0q � x�

q

�
ek(a(n1)+a(n2))T (25)

As x0q 6= x�

q in general, xkq ! x�

q as k !1 iff a(n1) + a(n2) <
0. Hence, a necessary condition for a stable mapping is

a(n1) + a(n2) < 0; (26)

that is, the average system must be stable. Further, it is evident that
a Lyapunov function V =

�
xq � x�

q

�2
defined on the switching

surface decreases after every 2T seconds if a(n1) + a(n2) < 0.
A stable mapping implies the existence of a stationary point

x�

q , and rules out the possibility of chaotic behavior of the hybrid
system. But it does not necessarily imply the existence of a limit
cycle, as x�

q could be an equilibrium point. However consider the
sequence

fx0
0

q ; x
10

q ; x
20

q ; : : : ; x
k0

q ; : : :g: (27)

The sequences (24) and (27) converge to x�q and x�

q
0 respectively,

subject to a(n1) + a(n2) < 0, where

x�

q
0

=

b(n1)
a(n1)

+ [ b(n2)
a(n2)

� b(n1)
a(n1)

]ea(n1)T � b(n2)
a(n2)

e[a(n1)+a(n2)]T

e[a(n1)+a(n2)]T � 1
:

If x�

q = x�

q
0, then the sequence

fx0q; x
00

q ; x
1
q; x

10

q ; : : : ; x
k
q ; x

k0

q ; : : :g (28)

converges and x�q is an equilibrium point. If not, it eventually os-

cillates between x�

q and x�
0

q giving rise to a limit cycle. Thus, limit
cycle existence requires x�q 6= x�

q
0, which is equivalent to (18)

having a different equilibrium point for n1 versus n2, i.e.,

�b(n1)=a(n1) 6= �b(n2)=a(n2): (29)

As any convergent sequence of real numbers converges to a unique
limit, (26) and (29) ensure a unique limit cycle for fixed n1 and n2.

The tap changing strategy described in Section 2 requires that
a tap change from n1 to n2 (n1 < n2) take place when
V (xq(� ); n1) < 1 and from n2 to n1 when V (xq(� ); n2) > 1,
where � is the switching time instant. For the approximate system
(18), and using (19), these conditions are translated into,

V0

n1x
> Qs +

1

n2
1x

;
V0

n2x
< Qs +

1

n2
2x

: (30)
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Fig. 5. Conditions on n1 and n2 for a stable limit cycle.

Conditions (26), (30), along with x�

q 6= x�

q
0, when grouped to-

gether simply imply 0 < n1 < na and na < n2 < nb. If xq(0) is
well within the region of approximation, this ensures the existence
of a stable limit cycle for the system (18) with Q = fn1; n2 :
n1 < n2g. Figure 5 illustrates convergence to a stable limit cycle
when the above restrictions on n1 and n2 are imposed.

7. CONCLUSIONS

A relatively simple hybrid system, consisting of a tap changing
transformer and a dynamic load, has been analysed. Conditions
which ensure a unique stable limit cycle were determined. This
analysis relied on a reasonable approximation which resulted in an
explicit expression for a Poincaré map. Stability analysis of more
general load-transformer systems is difficult. Nevertheless, the
ideas and intuition from this example form the basis for analysing
more realistic and complex hybrid systems. This is the focus of
on-going research.
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