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ABSTRACT

This paper proposes new structures for realizing tunable 2-D
fan and elliptical filters with different spectral characteristics using
McClellan transformation. The 1-D prototype is a variable digital
filter obtained from the interpolation of a set of desirable impulse
responses and is implemented using the Farrow structure. The
coefficients of the sub-filters and the transformation parameters in
the Farrow structure are represented in SOPOT, which can be
easily implemented as simple shift-and-add operations.
Furthermore, the transformation part can be shared between the
sub-filters leading to significant saving in hardware complexity.
Several design examples are given to demonstrate the effectiveness
and feasibility of the proposed approach.

I. INTRODUCTION

Two dimensions (2-D) digital filters with variable or tunable
spectral characteristics are useful in video signal processing, array
signal processing [9], image processing and analysis [10], and
computer vision [11]. Methods for designing one-dimensional (1-
D) variable digital filters (VDF) are studied in [12] and it can
broadly be classified into two categories: transformation [13] and
spectral parameter approximation [14] methods. In the former, a
prototype filter with certain desirable spectral characteristics is first
designed. Certain transformation such as the allpass transformation
method is then applied to the prototype filter to obtain the final
VDF. The spectral parameter approximation method is more
general in that it assumes that either the impulse responses or the
poles and zeros of the filters are polynomials of certain spectral
parameters. The coefficients of the polynomials are then
determined to provide. continuous tuning of the VDF by the
spectral parameters. Although the spectral parameter method can
be generalized to two or higher dimensions, its complexity is rather
high. For certain 2-D digital filters such as the circular symmetric
filters with variable cutoff frequencies, fan filters with variable
inclination and filter support, and elliptical filters with different
orientation and filter support, it is advantageous to transform the 1-
D variable digital structure to higher dimensions using the
McClellan transformation [1]-[5], greatly reducing the design and
implementation complexity of the 2-D VDF. The design and
implementation of such 2-D circular symmetric filters with
variable cutoff frequencies were studied recently by Pun et al [6].

In this paper, the work in [6] is further extended to the design
and implementation of variable 2-D fan and elliptical filters. First
of all, a 1-D VDF with the desired tunable range of cutoff
frequencies is designed and is implemented using the Farrow
structure [6). Then, the sub-filters in the Farrow structure will
undergo the McClellan transformation to obtain the variable 2-D
fan or elliptical filters. By varying simultaneously the control
parameter of the Farrow structure (which determines the cutoff
frequencies of the prototype) and the transformation parameters
(which determines the orientation, etc), the inclination/orientation
and support of these fan or elliptical filters can be varied on-line.
Because the coefficients in the sub-filters are fixed, they can be
efficiently implemented using sum-of-powers-of-two (SOPOT)
coefficients or canonical signed digits (CSD) yielding multiplier-
less realization. Since the McClellan transformation is applied to
all the sub-filters, the transformation part can be shared among
different sub-filters, representing significant saving in hardware
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complexity. For a given inclination/orientation, the transformation
parameters are first generated by linear interpolation and are
rounded to appropriate SOPOT coefficients. All the building
blocks for implementing the McClellan transformation are then
configured to implement these SOPOT transform parameters.
Since the transform parameters are very few, such building blocks
are relatively easy to implement. The final VDF structure requires
very few general-purpose multipliers, which is equal to the order of
interpolation used and it can be keep to a small number by dividing
the tuning range into smaller non-overlapping sections, if
necessary.

The rest of this paper is organized as follows: Section II is
devoted to the theory and design of 2-D zero-phase FIR filters
using McClellan transformation. Section III presents the design of
tunable 2-D FIR filters using the Farrow structure. Section IV
describes their multiplier-less realization for the sub-filters,
followed by several design examples in Section V. Finally,
conclusion is drawn in Section VI.

II. 2-D FIR FILTER DESIGN USING
MCCLELLAN TRANSFORMATION

Consider a zero-phase FIR digital filter [8] with impulse
response h(n) = h(—n), —N <n< N. Then we can write

H(w)= i‘b(n) cos(an) . ‘ )

n=0
where b(n) is equals to #(0) when #=0, and 24(0) when n=0.
By expressing the function cos(wn) as a polynomial of degree # in
the variable cos(@), H(®) can be rewritten as

N
H(w)= Zb(n)T,, [cos(a))] 2

n=0
where T,[-] is the n” order Chebyshev polynomial. The idea of
McClellan transformation is to replace the function cos(w) by a 2-
D function of (w,,w, ), denoted as F(w,,w,), so that the 1-D
of H(w) will be
(w,,®,) — plane according to the contour specified by F(w,,®,).
That is

frequency response mapped to the

N
H(w,,0,)= Y b(WT,[F(0,,»,)]. 3)

n=0

A. 2-D Fan Filters

To design a 2-D fan filter with arbitrary inclination, the
following  first-order =~ McClellan  transformation  with
IF (0,0, )] <1 can be used

cos(w) = 1(0,0) +7(1,0) cos(w,)

+2(0,1) cos(@, ) +£(1,1) cos(w, ) cos(w, ) * @)

According to [4], it is desired for the transformation to satisfy the
following constraints: 1) the 1-D frequency origin, @ = 0, maps to
the (0, 7 )-point of the 2-D frequency plane, and 2) the point
w =7 in 1-D maps to the (7 ,0)-point of the 2-D frequency plane
to avoid the scaling-problem of the transformation and to reduce



the number of free parameters. It can be shown that these two
constraints are satisfied if #(0,0) = #1,1) and #1,0) = 1 + #0,1).
Hence, (7) becomes
cos(w) = t(l,l)(l + cos(w, ) cos(w, ))
+#0,1)(cos(@, ) + cos(w,)) + cos(®,) ®

Assume @, is the cutoff frequency of the 1-D prototype filter and
6@ is the inclination angle of the ideal 2-D fan filter. Thus, (5)
should map the 1-D cutoff frequency at @, to the line
w, =, tan(@) [5]. The transform parameters can be determined
by minimizing the following mean-squares error (MSE) function

e= f"” |cos(wc) -Fw,,o, )Izdw, s (6)
7, 0° <0 <45 .
where o,, = : . The MSE function
7/tan(@), 45" <6 <90°
can be rewritten in a Quadratic form as
e=s+P'T+T'P+T'QT, Q)

where P= f' ~(cos(w,) - cos(®,))- Cdw, ,

s = [ (cos(@,) - cos(a, ) do,, @ = [*cclda,, T =0, 10DT
C ={1+ cos(w,) cos(w, ), cos(@, ) + cos(@,)]’,

which has the minimum value at
T=-Q'P . ®)

Using (8), we can compute the corresponding transformation
parameters and cutoff frequencies for a given inclination of the fan
filter. These parameters can be used to control the tuning
parameters in the variable 2-D fan filter to be described in Section
III to provide on-line tuning.

B. 2-D Elliptical Filters with Arbitrary Orientation
To design 2-D elliptical filters with arbitrary orientation 8, the
following McClellan transformation
cos(w) = 1(0,0) +#(1,0) cos(@, ) + t(0,1) cos(@, )
+1(L1) cos(w, ) cos(w, ) + s(1,]1) sin(w, ) sin(w, )

is employed [4]. The cutoff frequency boundary of the rotated
ellipse can be described as

©®

L XN
4 B> C
where 4>=a*/D,, B*=b*/D,, C=ab/D, ;
Dy =[1-(1~{a/b)")sin>(@)]", D, =[(b/a)-(a/b)]sin(26).

=1, (10)

The constants a and b are the cutoff frequencies on the @, - and
@, -axis with 8=0. For b > a, two constraints have to be satisfied
[4]: 1) @= 0, should map to the origin (0,0), and 2) @ = should
map to the point (7 ,0). This gives #0,1) =-#0,0), and {1,1) =1 -
#(1,0). Hence, (9) becomes
cos(w) = cos(w, ) cos(w, ) + t(0,0)(1 —cos(w, ))
+ t(],O)(cos(a)1 )—cos(w, ) cos(w, )) . an
+s(1,1) sin(w, ) sin(w, )
The technique described above [3] is used to find the optimum
transformation coefficients and the corresponding cutoff frequency

@, of the 1-D prototype filter. The variables of the MSE function
(7) in this design are '
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s= fA (cos(a)C) —cos(a, )cos(a)z))zda),
P= [:— (cos(a)c) - cos(a),)cos(a)z)) -C-do,

0= fACC’dw, , T =[1(0,0),2(1,0),s(1,)T

(12)

C =[1-cos(a@,),cos(w,) — cos(w,)cos(w,), sin(w,)sin(w,)Y
Again, we can compute the corresponding transformation
parameters and cutoff frequencies for different orientations of the
elliptical filter. These parameters can be used to control the tuning
parameters for the variable 2-D elliptical filter to provide on-line
tuning.

I11. DESIGN OF 1-D PROTOTYPE FILTER WITH
VARIABLE CUTOFF FREQUENCIES
We now describe the design of the 1-D prototype filter with

variable cutoff frequencies. Assume that the impulse response of
the filter with cutoff frequency w, is associated with some control

parameter ¢ and is given by

2N
H(z,$)= h(n,dz" . (13)
n=0
h(n, @) is assumed to be an L order polynomial in variable ¢
L
h(n,$) = c,.¢' (14)
1=0

This technique was first proposed by Farrow [7] for the design of
fractional-delay digital filters. The z-transform of (14) is

H@@=Zhﬁﬁ{k=ZGwﬂ, (s

=0 { n=0
2N
where C,(z) = ¢c,,z™" are called the sub-filters. The coefficients

n=0

¢, are determined by polynomial interpolating the impulse

response 4(n, @) designed at regular interval of ¢. Alternatively,
it can be obtained in using a least squares approach [12]. By
transforming C,(z) as in (3), tunable 2-D zero-phase FIR filter
with control or tuning parameter ¢ can be implemented by a

similar structure as shown in Fig. 1. The transformed sub-filters
are - )

: N
C(z1,2,) =Y b,(WT,[F(z,2,)), (16)
n=0
while the tunable 2-D FIR filter is
L .
H(zy,25,8) = Ci(2,,2,)¢" . 17
=0

It can be implemented by the structure shown in Fig. 1. Note that

* the same McClellan transformation F(z,,z,) is applied to all the

sub-filters. Therefore, it can be shared among the sub-filters
representing significant hardware saving, especially in our case
where the transform parameters are also varied according to the
tuning parameters, unlike the circular case in [6]. The
transformation coefficients are realized using linear approximation
as a function of tuning parameter ¢ , i.e. the first order of
interpolation. Its output is then quantized to SOPOT coefficients to
configure the transformation block F in Fig. 1. :

IV. MULTIPLIER-LESS SUB-FILTERS

To reduce the implementation complexity. of the 2-D VDF, the
coefficients of the sub-filters and the transformation parameters in
the transformation block F are implemented as SOPOT coefficients
in the form ’

n R
b (n)= u,,,2" (18)
r=1 . .



with u,,, €{~L1} and a, €{-g,...,~1,0,,...,g} , where g is a

positive integer and its value determines the range of the
coefficients, and R is the number of terms used in the coefficient
approximation and is usually limited to a small number. The
coefficient multiplication can then be implemented as limited
number of shifts and additions. The generation of the SOPOT
transformation parameters has been described in previous section.
To determine the SOPOT coefficient for the sub-filters, we
minimize the peak ripple error &

5 =max<|H,. (w)—ﬁ(w)') , (19)
between the ideal frequency response H,(w) and the frequency

response H (@) of the given SOPOT coefficients. In other words,
we try to minimize the peak ripple error & for the whole frequency
range of interest and the whole tunable range (@,, - @, ). The

real-valued coefficients b,(n) are first determined as mentioned

carlier. Let b be the vector containing these all coefficients. The
random search algorithm is to repetitively calculate a candidate
SOPOT vector b, defined by

b = lb +4b, lropor (20)

where b, is a random vector with elements chosen in the range *1,
A is a user-defined variable used to control the size of the
neighborhood to be searched, and [-]50,,0, is the rounding operator

that converts every element inside the input vector to its closest
SOPOT value with a given value of g. The performance measures
6 of the new coefficients are then calculated. The set that yields
the minimum peak ripple error & under the given constraints of
total number of terms and g is the optimum solution. Since this is a
random search algorithm, the longer the searching time, the higher
the chance of finding the optimal solution. There are two
advantages of this algorithm. First of all, with the computational
power of nowadays personal computer (PC), the time for. obtaining
high quality solution is manageable. The other one is applicable to
problem with general objective function probably with very
complicated inequality constraints. Moreover, a set of possible
solutions representing different tradeoffs between computational
complexity and performance will be generated during the search.
We now present several design examples.

V. DESIGN EXAMPLES

Example 1. 2-D Fan Filter with Tunable Inclination

In this example, a 2-D zero-phase FIR fan filter with tunable
inclination from 25° to 35° is designed. The corresponding cutoff
frequency of 1-D prototype filter is from 0.75 7 down to 0.64 7 .
The transition bandwidth is 0.1 7 . The order of the sub-filters is
30, i.e. N=15 and the order of the interpolation polynomial L is 2.
The worst-case stopband attenuation is around 30 dB. The real-
valued coefficients of sub-filters and that of the transformation
require 48 and 60 multipliers, respectively. The multiplier-less
(SOPOT) sub-filters and transformation, however, require
respectively 49 and 90 adders instead. For larger tuning range, say
from 25° to 45°, we can divide the tuning range into two parts, one
from 25° to 35° and the other from 35° to 45°. A similar set of sub-
filters can be designed and will operate only within the new tuning
range from 35° to 45°. The contour plots of the frequency
responses of the tunable 2-D fan filter with variable inclination are
shown in Fig. 2. Since the transformation part and the interpolation
part (with ¢) in Fig. 1 are both common to the two sections, only

the constant multiplications b,(n) need to be implemented for the
new section. Furthermore, the corresponding constant
multiplications for different sections can be implemented together
using the technique of multiplier block.
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Example 2. 2-D Elliptical Filter with Tunable Orientation

In this example, a 2-D zero-phase FIR elliptical filter with
tunable orientation from 15° to 30° is designed with fixed a =
0.1257 and b = 0.3757 . The corresponding cutoff frequency of
1-D prototype filter is from 0.129 7 to 0.143 7 . The transition
bandwidth is 0.1 7 . The order of the sub-filters is 30, i.e. N= 15
and the order of the interpolation polynomial L is 2. The worst-
case stopband attenuation is around 30 dB. The real-valued
coefficients of sub-filters and that of the transformation require 48
and 90 multipliers, respectively. The multiplier-less realization of
the sub-filters and that of the transformation require only 38 and 90
adders, respectively. The contour plots of the frequency responses
of the tunable 2-D elliptical filter with orientation at 15°, 22.5°, and
30° (¢ =0,0.5, 1) are shown in Fig. 3. Alternatively, the elliptical
size of this filter can be varied with fixed orientation.

VI. CONCLUSION

New structures for realizing tunable 2-D fan and elliptical
filters with different spectral characteristics using McClellan
transformation are presented. The 1-D prototype is a VDF
obtained from the interpolation of a set of desirable impulse
responses and is implemented using the Farrow structure. The
coefficients of the sub-filters and the transformation parameters in
the Farrow structure are represented in SOPOT, which can be
easily implemented as simple shift-and-add operations.
Furthermore, the transformation part can be shared between the
sub-filters leading to significant saving in hardware complexity.
Several design examples have given to demonstrate the
effectiveness and feasibility of the proposed approach.
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Fig. 1. Proposed structure of tunable 2-D FIR filters (a) Sub-filter C,(z,,z,) realization (b) Proposed Farrow structure

Fig. 3. Contour plots of frequency responses of tunable 2-D

Fig. 2. Contour plots of frequency responses of tunable 2.D fan elliptical filter with orientation at (a) 15°, (b) 22.5%, and
filter (divided into two sections) with inclination at (a) © 30° (4 =0,0.5,1) ’ ’
25°, (b) 35°, and (c) 45°. ¢ 2D L
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