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ABSTRACT

In recent years various models for packet traffic in networks
have been developed. Most models have used Poisson-like
sources which replicate traffic that is voice type. Such
sources are said to be short-range-dependent (SRD). The
early models of Solé and Valverde demonstrated that long-
range-dependent (LRD) traffic could arise in the queue length
dynamics at a given node within a communications net-
work even when the sources are LRD free. In this paper
we consider the nature of the onset of congestion as load is
increased in various types of network (regular, small-world
and scale-free) and contrast their congestion behaviour by
considering packet latency, or lifetime, indicators.

1. INTRODUCTION

We consider the behaviour of LRD sources within packet
traffic network models [4, 5, 11] and show the erratic ap-
proach to congestion by comparison with SRD traffic. The
nature of LRD is described and the traffic algorithm for
the various networks is listed. The congestion properties
of various types of regular lattice network are discussed.
Scale-free networks and their congestion properties are also
considered.

1.1. Long-Range-Dependence

LRD was shown to be a feature of Internet packet traffic by
Leland et al. in 1993, [7]. The LRD behaviour manifests it-
self along a communication channel as bursty activity in the
packet rate (no of packets/unit time) which persists on all
relevant time scales. The bursty traffic makes it much more
difficult to implement effective traffic congestion protocols
(TCP).

The statistical nature of LRD traffic is formally defined
in [3]. A key requirement is that the autocorrelation of bi-
nary packet traces, c(k), where the lag is k, satisfies a power
law decay of the form c(k) ∼ k−β , where β ∈ (0, 1). Equiv-

alently, c(k) ∼ k−(2−2H), where H = 1 − β/2 ∈ (1/2, 1) is
the Hurst parameter, [3]. By comparison, SRD traffic has
an exponential rate of decay. The Hurst parameter distin-
guishes between LRD traffic for H ≈ 1 and the onset of
short-range-dependent (SRD) traffic for H ≈ 1/2, when the
autocorrelation decay changes to exponential.

The essential contrast between SRD, Poisson-like traf-
fic, arising typically from traditional voice traffic, and the
bursty nature of Internet LRD traffic is seen in fig. 1.
The effect of scaling is shown for (a) short-range and (b)
long-range dependent traffic for a time series of a random
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Figure 1. The batch averages of packets/unit time for (a)
Poisson, and (b) LRD sources, each for sizes N = 100 and
N = 10000. A relatively large variance is retained in case
(b).

variable Xn, n = 0, 1, 2, . . . which takes binary values, i.e.
Xn ∈ {0, 1}. The data is averaged in batch sizes of N = 100
and N = 10000.

The standard deviation in the SRD traffic varies as the
square root of the batch size, or magnification, and we see a
‘smoothing’ of the traffic as N increases in fig. 1(a). Thus
the mean is an increasingly effective indicator of the in-
stantaneous load, i.e expected packet rate, in the traffic.
By comparison, for LRD traffic, we see that the variation
around the mean remains relatively high for large N in fig.
1(b). Even when averaged over longer time intervals by sev-
eral orders of magnitude, we still see extreme packet rates
which are close to 0 and 1.

LRD traffic increases queue lengths and delays dramat-
ically, and they cannot necessarily be ‘removed’ by intro-
ducing SRD data streams. The effects of LRD need to
be allowed for, both in computer models of network be-
haviour and in the routing algorithms used to control data
flow through networks. Several lattice models with differ-
ent topologies and routing algorithms have been studied
for the emergence of congestion, [4, 5, 11, 13]. In particu-
lar, Solé and Valverde [11], showed how the LRD can arise
from network interactions with LRD-free traffic hosts. In
this paper, we compare Poisson sources with LRD sources
at the same load values, on various networks, which allows
a closer study of the ‘hierarchical’ nature of LRD from vari-
ous sources, and models the real situation more closely. The
implementation of control of host queue lengths also brings
new insights into the model’s behaviour, [13].
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Figure 2. The graph of the map f consists of two seg-
ments and each has a tangency with the line y = x. The
iteration of the map f with initial condition x0 forms a
‘web’ generating the iterative sequence, or orbit, xn, where
xn = f(xn−1), n = 1, 2, . . . . Note that the tangencies at
x = 0, 1 gives a ‘slow’ change in the values of the sequence
xn, and therefore the output zn provides long sequences of
consecutive ‘0’s or ‘1’s.

1.2. Nonlinear modelling of LRD

A traffic map , [2], is used to provide binary sequences
that model host packet production, see section 2. The out-
put ‘1’ indicates that a packet is added to the host queue
for transmission, otherwise ‘0’ indicates that no packet is
produced. The map f is defined on the unit interval of real
numbers I = [0, 1]. The iteration of f with an initial value
x0 produces an orbit {xn} defined by xn+1 = f(xn) in I,
for n = 0, 1, 2, . . . . The sequence {xn} in I is converted to
binary output zn by associating the symbols ‘0’ or ‘1’ to the
intervals [0, d], (d, 1] respectively.

We use the family of Erramillimaps, [2], f = f(m1,m2,d) :
I → I, where

f(x) =

{
x + (1− d) (x/d)m1 , x ∈ [0, d],

x − d ((1− x)/(1− d))m2 , x ∈ (d, 1],
(1)

see also related maps in [10, 12]. Here d ∈ (0, 1) and the
parameters m1, m2 ∈ [3/2, 2] induce intermittency, of order
m1 and m2, at the points x = 0 and x = 1 respectively.
The intermittency produces slowly incremental streams of
orbital values, [10]. This, in turn, ensures the so-called
‘memory’, or LRD, in the digital output zn. It has been
shown that the auto-correlation of the output function z,
c(k) ∼ k−β , k ∈ Z+, has the decay constant β = (2 −
m)/(m − 1) ∈ (0, 1) with m = max{m1, m2}, [6, 8].

2. COMMUNICATION NETWORKS

The basic model we consider here, [11], has a lattice network
of interconnected nodes which are either hosts or routers.
All nodes can transfer packets and, additionally, hosts can
both transmit and receive packets. Both types of node have
buffers for storing packets. Packets when produced are al-
located another host destination which is chosen randomly.

When a packet arrives at the head of a buffer, it then trans-
fers to the queue at an adjacent node which is closer to its
destination. Performance factors such as average delivery
time of packets and the throughput of packets can now be
considered for this model.

2.1. Routing Algorithms

A routing algorithm is needed to model the dynamic as-
pects of the network. Packets are created at hosts and sent
through the lattice one step at a time until they reach their
destination host. In real packet-switching networks, packets
carry header and information payloads with them, including
data about the state of the network. To simplify the mod-
elling, we record only the time of creation and the source
and destination addresses when passing packets through the
network.

The routing algorithm operates as follows:
• first a host creates a packet using either a uniform

random distribution (Poisson) or a distribution defined by
a chaotic map (LRD), as described in section 1.

• if a packet is generated it is put on the end of the
queue for that host. This is repeated for every host in the
lattice.

• packets at the head of each queue are sent to a neigh-
bouring node which is closer to the destination node (using
the least used link if necessary).

This process is repeated for each node in the lattice.
The whole procedure of packet generation and movement
represents one time step of the simulation. Initially, there is
no feedback implemented on queue lengths in this algorithm
and hence the model is uncontrolled.

2.2. Network Models

The triangular and honeycomb lattice networks have now
been investigated to check the robustness of the results for
the rectangular grid in [13]. In each case, the density of
hosts ρ ∈ [0, 1] is the ratio between the number of hosts
and the total number of nodes in the network. Hosts are
randomly distributed throughout the network and we fix
ρ = 0.164 for the simulations presented here. Poisson-like
traffic is created by randomly choosing a number on the
interval [0, 1] and if it is below a discriminator value λ, then
a packet is emitted. Hence, for a uniform distribution the
average rate at which packets are produced at a host is λ.

Rectangular lattice models of this type have been widely
discussed, see [5, 9, 11, 13]. The finite rectangular(R) lattice
Z consists of L2 nodes and each node has four neighbours.
By comparison, Internet networks typically have the charac-
teristics of both clustering and short path-lengths. Small-
world (SW) networks introduced by Newman and Watts
have these features. For example, the regular graph in fig.
3(c) consists of an underlying double ring network with S
nodes and valency m = 4, which is changed into a SW-
network by the addition of random links with a probability
p. For this network, the average path-length dav(p) satisfies
dav(0) ≈ α ln(S − β) + δ and dav(1) = ln(S)/ ln(m).

Scale-free (SF) networks, [1] and fig. 3(d), have the
property that the probability, P (k), of a given node hav-
ing k links has a power law decay, i.e. P (k) ∼ k−γ , with
γ ∈ (2, 3) for the Internet. Depleted rectangular lattices, or
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Figure 3. (a) Triangular(T), and (b) hexagonal(H) toroidal
lattices, used for testing congestion properties as super- and
sub- sets of the R-lattice. (c) A regular ring network with
valency m = 4 is shown with added random connections.
(d) The scale-free graph has been constructed with γ = 3.
Hosts (�) are distributed randomly in the network.

percolation graphs, where edges are removed randomly with
a given probability, have also been considered - they form
a useful collection of intermediate structures between the
regular, fig 3.(a,b) and non-regular networks, fig. 3(c,d).

3. CRITICAL LOAD BEHAVIOUR

A key factor in the network which has a pronounced ef-
fect on congestion is the packet rate of production at the
hosts. The obvious control is to reduce the rate. This can
have a dramatic effect for SRD traffic but is not so useful in
the LRD case. Performance indicators, such as packet life-
time, can change so dramatically as load is increased that
they can sometimes be best described by a phase transi-
tion, [1, 4, 9]. If a critical load exists at which the delivery
time of packets increases dramatically, then a clear control
strategy to keep the load below criticality can be imple-
mented. However, when the transition to congestion is less
clear-cut, as we show for LRD traffic, an effective control
strategy becomes much more problematical.

Fig. 4(a) gives a comparison of onset of congestion
in two otherwise identical networks with host density ρ =
0.164. The average lifetime, or end-to-end delay of a packet,
is plotted against the load λ, the average number of packets
generated per host per unit time. There is a phase tran-
sition from a free phase in which lifetimes remain small to
a congested phase in which lifetimes increase rapidly. The
hosts in one case are Poisson, and for the other cases, the
hosts are LRD with different values of the Hurst parame-
ter. For simplicity, the intermittency parameters m1, m2

are kept equal (to m). When the exponents differ, the
strongest intermittency dominates the auto-correlation be-
haviour, [6, 8]. The nature of the traffic changes from SRD
at m = 1.5 (H = 0.5) to full LRD at m = 2 (H = 1). The

most pronounced differences do occur near and immediately
below the critical load point, λ = λc. Crucially, for λ < λc,
the average lifetimes for LRD sources are much greater than
for Poisson sources - typically by orders of magnitude, [13].
The comparison of onset of criticality for other types of
network is seen if fig. 5.

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

10
4

load

a
v
e
ra
g
e
li
fe
ti
m
e

LRD Traffic Source

Poisson-Like Traffic Source

λ

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

load

th
ro
u
g
h
p
u
t

m
1
= m

2
= 1.95

λ
(b)

(a)

Figure 4. (a) A smooth transition to congestion is shown
for the Poisson sources. As LRD is introduced, by taking
m > 1.5 in eqn.(1) we see an increasingly rapid rise in
the average lifetime of packets for lower loads. (b) The
throughput increases up to the Poisson critical load of λ =
0.39, but the maximum throughput achieved is lower for
LRD traffic.

In Fig. 4(b) the peak in throughput occurs at the criti-
cal point where the network reaches its peak efficiency. The
peak value of throughput, is slightly lower for the LRD
sources, emphasizing the longer lifetimes of packets. How-
ever, the difference is less pronounced than that seen in
average lifetimes. Away from the peak, values of through-
put for the two types of traffic source are very similar. Al-
though the throughput is only slightly reduced, the average
lifetimes increase by up to a factor of ten. This earlier con-
gestion onset appears to be the most important feature of
the model, and has significant implications for shared back-
bone data network infrastructures.

3.1. Mean Field Models

It should be noted that as ρ increases, the total load on the
system increases and the phase transition becomes sharper.
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Figure 5. The critical transitions for average packet lifetime
in SF networks occur at substantially lower loads than those
for both regular and SW networks.

In fact, simple mean field approaches [13] suggest the reci-
procity property λc = 1/ρdav, [5, 11, 13], for the critical
load, which can be obtained by considering total distance’
to destination’ properties, see fig. 6. This result was ob-
tained for the R-lattice (for the special case ρ = 1) in [5].
The load at which congestion begins, λ′

c < λc requires more
sophisticated estimates and is obtained by distinguishing
the host and router traffic, [13].

There is strong evidence that the mean field approach
becomes an increasingly poor predictor of criticality at low
loads for depleted regular graphs.

3.2. Packet Traffic Simulation with Control

The simplest way to control packet traffic is to limit the
length of queues. Long queues in the network invariably
occur at hosts and a control mechanism was considered to
reduce the rate of packet production at hosts with long
queues. The simulation keeps count of packets produced,
so the actual or ‘carried’ load is known. Application of this
simple control mechanism, [13] , showed that the network
can be prevented from becoming congested by effectively
limiting its packet carrying capacity. This is particularly
useful in the LRD case when congestion can occur at much
lower load levels. Extra refinements in routing and network
information carried by the packet are being considered, see
also [4] for recent progress.

Current work aims to develop the uncontrolled model
into a controllable model which reacts to the local build-up
of queues with an objective of delaying onset of congestion
at the network level when the sources are strongly long-
range dependent.
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