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ABSTRACT 
In this paper it is shown that by building on parallel topographic 
CNN preprocessing of image flows, efficient terrain exploration 
and visual navigation algorithms can be developed. The approach 
combines several channels of nonlinear spatio-temporal feature 
detectors within an analogic CNN algorithm and produces 
unique binary maps of salient feature locations. This 
preprocessing scheme is embedded into a multi-target tracking 
(MTT) framework where these features are statistically described 
and assigned to numbered tracks. The MTT output has two 
distinct roles. First, its feature descriptors drive a classifier based 
on the adaptive resonance theory (ART), which is also 
implemented on CNN architecture. Second, it provides an optical 
flow ("target displacement") estimate to the navigation system, 
which in turn calculates the flight control parameters (Yaw-
Pitch-Roll). An upper level visual attention and selection 
mechanism uses both the feature descriptors and the optical flow 
estimates to automatically adjust the focus and scale (zoom) 
during navigation. The paper describes the architecture and the 
algorithmic frameworks and provides the first experimental 
results on aerial video-flows. 

1. INTRODUCTION 

The intention of bio-inspired engineering of exploration systems 
is to learn the principles found in successful, nature-tested 
mechanisms of specific “crucial functions” that are difficult to 
accomplish by conventional methods, but which are realized 
rather effectively in nature by biological organisms. The intent is 
not just to mimic operational mechanisms found in specific 
species but also to learn the salient principles from a variety of 
diverse bio-organisms for a desired “crucial function”. We are 
deciphering many of these natural visual strategies and have 
found ways to apply the results in areas such as navigation, stable 
flight and terrain following. With the use of biomorphic fliers [1] 
our results could also contribute to previously impossible 
projects in related fields of science. 
Recent biological studies have confirmed that representations of 
each different characteristic of the visual world are formed in 
parallel, and embodied in a stack of “strata” in the retina [8]. 
Each of these representations can be efficiently modeled in 
Cellular Nonlinear Networks (CNN, [2]-[4]). When translated 
into CNN image processing operations, many of the biological 
functions constitute algorithmic cornerstones, useful in practical 
applications. It is our view that incorporating the success 
strategies of bio-inspired navigation and visual search/pattern 
recognition/image understanding into engineering solutions 
should lead to rapid advances in future missions. Our work 

primarily focuses on architecture and algorithmic framework 
design and makes the first steps toward a CNN based system-on-
a-chip (SoC) for visual search and navigation tasks. 
During this work we have been developing stored program 
cellular nonlinear processing strategies for terrain exploration 
and classification; automatic adjustment of focus and scale of 
attention; navigation support and a system level capability to 
track multiple targets. The experiments have been conducted 
mainly on monocular aerial video-flows showing diverse terrain 
sites from a navigating plane. 

2. MULTI-TASK SYSTEM DESIGN 

2.1 System Description 
The general system architecture designed for bio-inspired visual 
search and navigation is shown in Fig. 1. Assuming a large 
resolution array sensor input the focus and scale is automatically 
adjusted in a feedback loop depending on feature processing 
results. The selected sensor input undergoes a parallel multi-
channel CNN processing, which provides a topographic (binary) 
output for the multi-target tracking (MTT, [7]) framework. The 
output of the MTT sub-system consists of static and dynamic 
target attributes. In this context, targets could be both salient 
terrain features (e.g. river forks, irregular/large rocks etc.) and 
objects in motion (e.g. flying air-vehicles, birds etc.). Static 
target attributes include target feature descriptors such as 
centroid locations, contour and skeleton structure, orientation, 
size and others. Dynamic target attributes describe all targets in 
motion with their kinematic properties (this includes the optical 
flow: the estimate of the 2D motion field). The MTT core is 
driven by the local feature extraction module. Based on the local 
feature descriptors at a specific frame, a distance is calculated to 
all existing targets. Then, filtered by a tunable gating mechanism 
these distances in the feature space are taken as the likelihood of 
whether an actual object belongs to a specific target track. The 
arrangement decision is made in the data association module, 
which is also responsible for adjusting the main algorithm 
parameters of the analogic CNN preprocessing. The output of 
this module is the input to the state estimation block where based 
on kinematic assumptions (refined through subsequent 
measurements) the target states are predicted for the next frame 
and used as a reference for the distance calculation block. 
This system description envisions a platform with multi-task 
processing capability. Such architecture have been designed and 
built; and is referred to as the Compact Cellular Visual 
Microprocessor (COMPACT CVM). The COMPACT CVM 
architecture (Fig. 2) builds on state-of-the-art CVM type 
(ACE16k) and DSP type (TEXAS 6x) microprocessors and its 
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algorithmic framework contains several feedback and automatic 
control mechanisms in between different processing stages (Fig. 
3). The architecture is standalone and with the interfacing 
communication processor it is capable of 100 Mbit/sec 
information exchange with the environment (over TCP/IP). The 
COMPACT CVM is also reconfigurable, i.e. it can be used as a 
monocular or a binocular device with a proper selection of a 
large resolution CMOS sensor (IBIS 5) and a low resolution 
CNN/CVM sensor-processor (ACE16k). 
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Fig. 1. Main processing blocks and signal flow of the visual 
microprocessor architecture designed for bio-inspired visual 
search/navigation 

The COMPACT CVM architecture is a fault tolerant multi-task 
visual computer for bio-inspired exploration, selection, tracking 
and navigation. We believe that this architecture also provides a 
framework for a SoC design: toward a fully integrated cellular 
sensor-computer. 
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Fig. 2. Main building blocks of the COMPACT CVM 
architecture 

2.2 Biological Motivations 
There is a strong biological motivation behind building a multi-
channel adaptive algorithmic framework for visual search and 
navigation. It has been long known that the mammalian visual 
system processes the world through a set of separate spatio-
temporal channels. A recent study has confirmed that the 
organization of these channels begins in the retina where a 
vertical interaction across ten parallel stack representations can 
also be identified ([8]). 
Beyond reflecting the biological motivations our main goal was 
to create an efficient algorithmic framework for real-life 

experiments, thus we have decomposed the above model into a 
multi-channel adaptive (single-layer) CNN-UM analogic 
algorithm. Within this algorithmic framework the enhanced 
image flow is analyzed by temporal, spatial and spatio-temporal 
filters. The output of these sub-channels are then combined in a 
programmable configuration to form the new channel responses. 
Crisp or fuzzy logic strategies define the global channel 
interaction and result in a unique binary image flow. This is also 
combined with the output of a single/multiple step prediction and 
forms the final output. 
When building up the computing blocks of the above multi-
channel algorithmic framework the following key processing 
strategies learned from retina modeling and biological vision 
related experiments have been used (the associated image 
processing / system design arguments are given in italic): 
- spatial, temporal and spatio-temporal decomposition of the 

input flow: an efficient geometric distortion analysis 
requires a sparse signal representation 

- signal flow normalization: dynamic range optimization 
- parallel on-off channel processing: DC-component 

compensation 
- narrow and wide-field wave-type interaction: efficient 

binary patch shaping with noise suppression 
- "vertical" interaction of the decomposed channels: forming 

a unique detection output through optimized "cross-talk" of 
the individual channels 

- attention and selection mechanisms: efficient content and 
context dependent processing 

- saccade detection mechanisms: proper handling of large 
shifts in the field of view 

3. THE ALGORITHMIC FRAMEWORK 
In the COMPACT CVM systems there is an upper-level visual 
attention and selection mechanism adjusting the focus and scale 
(zoom) of processing ([10]). This mechanism can select a single 
or multiple windows from the same large resolution frame at a 
certain time instant, however the video-flow is never processed 
in parallel at full resolution (much alike biological systems). This 
framework allows the system of multi-task execution at different 
time scales. The general algorithmic framework (Fig. 3) 
incorporates optical flow estimation, feature classification and 
automatic attention mechanisms built on topographic nonlinear 
parallel feature processing performed by the CNN/CVM sensor-
processor. 

CMOS sensor
(cut through an image
window controlled by 

an attention 
mechanism)

CNN sensor/processor
(exploration by parallel,
spatio-temporal nonlinear 
feature extraction)

DSP 
(selection/ 
tracking/ 
navigation)

…

Sensor Image 
1024x1024

Window 
128x128

Nonlinear 
spatio-temporal 

channels

Global and 
local feature 
descriptors

Selection of focus and 
scale of attention

Optical flow & 
navigation parameter 
estimation (YPR)

Feature classification 
by adaptive resonance

Upper-level framework
(at different time-scales)

Y,P,R

C

F, S

 
Fig. 3. Flow-processing diagram of the COMPACT CVM 
algorithmic framework 
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Topographic Multi-Channel Preprocessing 
In Fig. 4 examples are shown for calculating the topographic 
feature maps (the first parallel stage of the analogic algorithm 
described in Fig. 3) for terrain video-flows. As illustrated (see the 
right most column of the figure) these maps describe the 
edginess, irregularity, rough/fine structures, connected structures 
etc. of the input. It is also obvious that the description is non-
orthonormal in the feature space thus providing certain 
robustness when some of these specific estimation strategies are 
sensitive and not reliable enough for further processing. 

Input Enhancement

Focus FM4

FM3

FM2

FM1

 
Fig. 4. Example for topographic feature maps (FM) calculated 
by CNN processing. 

3.1 Attention and Selection Mechanisms 
If the sensory input is a large resolution array video-flow and 
only a certain region of interest is evaluated, an automatic 
mechanism is needed to select the appropriate focus and scale of 
processing (Fig. 5). In the current experiments we are using 
video-flows acquired by large resolution sensors and 
implementing various attention and selection mechanisms (see 
e.g. [10]) based primarily on local target descriptors and 
secondarily on motion-flow estimates. As it has been noted in the 
earlier sections, the configuration of such a mechanism is 
dependent on a classifier output ("different strategies for 
radically different terrains"). 

space-time 
trajectory of focus 
of attention

windows at 
different spatial 
scales

actual field of view
(full parallel 
processing)

full frame of 
automatic visual 
navigation

scale 
(zoom 
level)

focus (pattern 
selection 
confidence)

time

course

fine

low

high

 
Fig. 5. Driving the focus and scale of attention with a mutual 
interaction of the focus and scale selection mechanisms. 

3.2 Feature Based Classification Schemes 
There are several classifiers that could have been used for terrain 
feature analysis and global classification. We have applied an 
adaptive resonance theory (ART, [13]) based module capable of 
learning on a pre-selected image flows (training set) and 

performing the classification in a dynamic procedure (new 
classes will also be formed "on-line" if the test image flows are 
not similar to the learnt categories). The process description of 
off-line supervised learning and on-line classification is shown in 
Fig. 6. The ART network has its roots in neurobiological 
modeling and has a strong mathematical background (e.g. 
modeling THALAMUS V1). It is a further advantage that a 
modified version of ART can be implemented on existing CNN-
UM architecture. Thus, the combined CNN-ART algorithmic 
framework is a fully biologically inspired algorithmic approach 
to terrain feature analysis implemented in our current system. 
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Fig. 6. Terrain exploration and classification with off-line 
supervised learning and on-line recognition. The topographic 
processing (spatio-temporal feature extraction) is completed 
by a CNN block, while the feature vector learning and 
classification is performed by an ART network. 

3.3 Navigation Parameter Estimation 
An integrated motion field and flight control parameter 
estimation algorithmic framework is shown in Fig. 7. As 
described in the introductory section the solution for visual 
navigation is also based on a multi-target tracking layer driven by 
multi-channel CNN preprocessing. In its simplified form (see 
flow description I. in Fig. 7) this could be a multi-feature tracking 
over a fixed uniform grid (no dynamic descriptors) or the 
enhanced version of the multi-target tracking scheme over an 
adaptive non-uniform grid (see flow description II. in Fig. 7). The 
output of both types of processing should undergo a robust 
nonlinear sorting, translation and scaling before it enters the 
stage of navigation parameter estimation. 
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Fig. 7. Motion field and flight control parameter estimation 
based on a fixed uniform and/or adaptive non-uniform grid 
defined over the large resolution video-flow. 
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The flight control parameter estimation module requires the 
motion field estimates (the optical flow) for each frame as an 
input and it calculates the unit translational direction along with 
the rotation parameter estimates (and possibly the structure 
estimates). We have found that reliable motion field estimates 
can be derived from the MTT output if a reasonable number of 
features are tracked in parallel (typically more than a dozen, see 
also [11], [12]). 

4. EXPERIMENTAL RESULTS 

While we have started the measurements of the COMPACT 
CVM with the ACE16k [6], the architecture and the algorithmic 
framework described in this paper have been emulated within the 
ACE-BOX environment [9] hosting the previous generation 
CNN-UM type microprocessor (ACE4k, [5]). This system is 
capable of processing at a video frame-rate. Samples from the 
first experimental results are shown in Fig. 8 and Fig. 9. 

   

   

   

   
Fig. 8. This image sequence shows the operation of the 
attention-selection mechanism driven by the classifier output. 
The algorithm attempts to focus on the most river-like area of 
the input video flow. Observe, that the selected view port is 
enlarged periodically to detect relevant locations that lie 
outside the area in focus. The white square shows the area of 
the input video that is in focus, i.e. scaled down to the 
resolution of the visual microprocessor. 
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Fig. 9. Experimental results of navigation parameter (Y-P-R) 
estimation compared to ground-truth references. 

5. SUMMARY 

We have proposed a CNN technology based bio-inspired visual 
microprocessor architecture and a dedicated algorithmic 
framework for efficient terrain exploration, site selection, 
tracking and navigation. 
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