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ABSTRACT

Since Limís 1986 paper on the frequency-response masking
(FRM) technique for the design of FIR digital Ýlters with very
small transition widths, the analysis and design of FRM Ýlters
have been a subject of study. In this paper, a new optimization
technique for the design of FRM Ýlters is proposed. Central to
the new design method is a sequence of linear updates for the de-
sign variables, with each update carried out by second-order cone
programming. Design simulations are presented to illustrate the
proposed algorithms and to evaluate the design performance.

1. INTRODUCTION

Since the work of [1], the frequency-response masking (FRM)
technique for the design of FIR digital Ýlters with very narrow
transition bands has been a subject of study [2]ñ[9], [13]. As a
result, in many cases it has become the method of choice primar-
ily because of the considerably reduced realization complexity it
offers compared with other available options [5][8].

As illustrated in Fig. 1, abasic FRM filter involves a linear-
phase prototype ÝlterHa(z) up-sampled byM , a pair of linear-
phase masking Ýlters{Hma(z), Hmc(z)}, and a delay line that,
together with the prototype Ýlter, helps form a linear-phase com-
plementary pair{Ha, Hc} [1]. Given an up-sampling factor,
lengths of the subÝlters involved, and passband/stopband edges,
the design of a basic FRM Ýlter is usually carried out bysepa-
rately designing the subÝlters [1][5][6]. As such the FRM Ýlter
obtained is only suboptimal. In this paper, we present a rather dif-
ferent optimization technique in which the set of Ýlter coefÝcients
of all subÝlters is treated as a single design vector and an optimal
basic FRM Ýlter is designed through a sequence of linear updates
for the design variables, with each update carried out in a second-
order cone programming (SOCP) framework.

The second issue to be addressed in this paper is the opti-
mal design of FRM Ýlters withreduced passband group delay.
Linear-phase FIR Ýlters have constant group delay in the entire
frequency band, but for a Ýlter with very narrow transition width,
the group delay can be exceedingly large, a property not desirable
in many applications. For a linear-phase FRM Ýlter with a large
up-sampling factorM , its large group delay is dominantly con-
tributed by the prototype Ýlter. Therefore, if the prototype Ýlter
has a nonlinear phase response with a reduced passband group de-
lay, sayd, and if the delay line (the lower-left block in Fig. 1) is
accordingly modiÝed toz−dM , then the Ýlter is expected to have
its passband group delay reduced byM [0.5(N −1)−d] whereN
is the length of the prototype Ýlter. Hence the reduction in group
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Figure 1: A basic FRM Ýlter structure.

delay can be signiÝcant especially when M is large. In this paper,
we pursue this idea and show that, by a joint optimization of the
entire set of subÝlters, the prototype as well as masking Ýlters all
contribute to minimizing the Ðuctuation in the reduced passband
group delay.

2. OPTIMIZATION METHODOLOGY

Let Hd(ω) be a desired real-valued or complex-valued function of
frequency variable ω, and H(ω, x) be a real-valued or complex-
valued function of ω, which depends on a real-valued parameter
vector x ∈ Rn×1. We seek to Ýnd a vector x∗ that solves the
weighted minimax optimization problem

minimize
x

{maximize
ω∈Ω

W (ω)|H(ω, x) − Hd(ω)|} (1)

Let η be an upper bound of W (ω)|H(ω, x) − Hd(ω)| on Ω.
As the Ýrst step of the optimization we convert the problem in (1)
into a constrained minimization problem

minimize η (2a)

subject to: W (ω)|H(ω, x) − Hd(ω)| ≤ η for ω ∈ Ω (2b)

Suppose we have a reasonable initial point x0 to start the design,
and we are now in the kth iteration. For a nonlinear and smooth
H(ω, x) in a vicinity of xk, we can write

H(ω, xk + δ) = H(ω, xk) + g
T
k (ω)δ + o(||δ ||)

where gk(ω) is the gradient of H(ω, x) with respect to x and
evaluated at xk. Hence, provided that ‖δ‖ is small, with x =
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xk + δ we have

W 2(ω)|H(ω, x) − Hd(ω)|2

≈ [gT
rk(ω)δ + erk(ω)]2 + [gT

ik(ω)δ + eik(ω)]2 (3)

where grk(ω) and g ik(ω) are the real and imaginary parts of
W (ω)gk(ω), respectively, and

erk(ω) = W (ω)[Hr(ω, xk) − Hrd(ω)]

eik(ω) = W (ω)[Hi(ω, xk) − Hid(ω)]

with Hr(ω, x), Hi(ω, xk), Hrd(ω), and Hid(ω) being the real
and imaginary parts of H(ω, xk) and Hd(ω), respectively. From
(2) and (3), it follows that an approximate solution of (2) in the kth
iteration can be obtained by solving the following problem:

minimize η (4a)

subject to: [(gT
rkδ + erk)2 + (gT

ikδ + eik)2]1/2 ≤ η (4b)

for ω ∈ Ω

‖δ‖ ≤ b (4c)

where b is a prescribed bound to control the magnitude of δ .
If we treat the upper bound η as an additional design variable

and deÝne an augmented vector as u = [η δT ]T , then the problem
in (4) can be formulated as

minimize c
T

u (5a)

subject to: ‖Gku + ek‖ ≤ c
T

u for ω ∈ Ωd (5b)

‖Î u‖ ≤ b (5c)

where

c = [1 0 · · · 0]T

Gk =
[

0 gT
rk

0 gT
ik

]
, ek =

[
erk

eik

]
Î = [0 I ]

and Ωd = {ω1, . . . , ωk} ⊂ Ω is a set of dense grid points in
the frequency bands of interest. Obviously, the problem in (5) is a
SOCP problem [10][11].

Having solved the problem in (11) for a minimizer

u
∗
k =

[
η∗

k

δ∗
k

]
vector δ∗

k is used to update xk as

xk+1 = xk + δ
∗
k

The iteration continues until ‖δ∗
k‖ becomes insigniÝcant compared

to a prescribed tolerance.

3. OPTIMIZATION OF FRM FILTERS: BASIC AND
LOW-DELAY STRUCTURES

3.1. Basic FRM Filters

A. Frequency response and its gradient

The reader is referred to the structure in Fig. 1 where all sub-
Ýlters are assumed to have linear-phase responses, and the lengths

of the masking Ýlters are either both even or both odd. The transfer
functions of the subÝlters are denoted by

Ha(z) =

N−1∑
k=0

hkz−k, Hma(z) =

Na−1∑
k=0

h
(a)
k z−k,

Hmc(z) =

Nc−1∑
k=0

h
(c)
k z−k (6)

Without loss of generality, the FRM Ýlter can be treated as a zero-
phase FIR Ýlter, and the frequency response of the FRM Ýlter is
then given by

H(ω, x) = [aT
c(ω)][aT

a ca(ω) − a
T
c cc(ω)] + a

T
c cc(ω) (7)

where

a =

{
[h(N−1)/2 0.5h(N+1)/2 · · · 0.5hN−1]

T if N odd
0.5[hN/2 · · · hN−1]

T if N even

c(ω) =

{
[1 cos Mω · · · cos[(N − 1)Mω/2]T if N odd
[cos(Mω/2) · · · cos[(N − 1)Mω/2]]T if N even

aa =

{
[h

(a)

(Na−1)/2 0.5h
(a)

(Na+1)/2 · · · 0.5h
(a)
Na−1]

T if Na odd

0.5[h
(a)

Na/2 · · ·h(a)
Na−1]

T if Na even

ca(ω) =

{
[1 cos ω · · · cos[(Na − 1)ω/2]T if Na odd
[cos(ω/2) · · · cos[(Na − 1)ω/2]]T if Na even

ac =

{
[h

(c)

(Nc−1)/2 0.5h
(c)

(Nc+1)/2 · · · 0.5h
(c)
Nc−1]

T if Nc odd

0.5[h
(c)

Nc/2
· · ·h(c)

Nc−1]
T if Nc even

cc(ω) =

{
[1 cos ω · · · cos[(Nc − 1)ω/2]T if Nc odd
[cos(ω/2) · · · cos[(Nc − 1)ω/2]]T if Nc even

and the design variables are put together as parameter vector

x =

[
a

aa

ac

]

The group delay of the FRM Ýlter is given by

D =
(N − 1)M

2
+ d (8)

where d = max((Na − 1)/2, (Nc − 1)/2), and the gradient of
H(ω, x) with respect to x is given by

g(ω, x) =

[
y(ω)c(ω)

[aT c(ω)]ca(ω)
[1 − aT c(ω)]cc(ω)

]
(9)

y(ω) = aT
a ca(ω) − aT

c cc(ω).

B. Desired frequency response and weighting function

For the sake of presentation clarity, we consider the case of
designing a lowpass FRM Ýlter with up-sampling factor M , nor-
malized passband edge ωp and stopband edge ωa. The desired
Hd(ω) in this case becomes

Hd(ω) =

{
1 for 0 ≤ ω ≤ ωp

0 for ωa ≤ ω ≤ π
(10)
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and a staircase weighting function W (ω) = 1 for 0 ≤ ω ≤ ωp,
W (ω) = w for ωa ≤ ω ≤ π and W (ω) = 0 elsewhere is chosen,
where w is a positive scalar to weigh the stopband relative to the
passband.

C. Initial design

Given parameters M, N, Na, Nc, ωp, and ωa, a reasonable
initial design can be obtained by designing lowpass H(z), Hma(z),
and Hmc(z) as discussed in [1]. It is important to stress that al-
though (as will be demonstrated by simulations shortly) the opti-
mized H(z) does not at all look like a lowpass Ýlter, the initial
design prepared here worked Ðawlessly in a variety of FRM de-
signs we have attempted.

D. Placement of grid points and bound b

Our design practice has indicated that relatively denser grid
points should be placed in the regions near the band edges in both
passband and stopband so as to avoid using unnecessarily large
number of total grid points. We recommend that about 25% of the
grid points be placed in the 10% of that band nearest to the band
edge.

As expected, the value of bound b in constraint (8c) is taken
to be proportional to the dimension of vector x , namely, b = γn
where n denotes the dimension of x and γ is a constant factor. It
was found in our simulations that the norm constraint (8c) worksed
effectively when the valure of γ was in the range of [0.005, 0.05].

E. A design example

The design is a linear-phase lowpass FRM Ýler with the same de-
sign parameters as the Ýrst example in [1], i.e., N = 45, Na =
41, Nc = 33, M = 9, ωp = 0.6π, and ωa = 0.61π. The weight
was set to w = 1, bound b in (4c) was set to b = 0.005n (n = 61
in this design), and the total number of grids was K = 900. In this
case the optimization algorithm handles 62 variables with 1862
constraints. With 10 iterations the algorithm converges to an FRM
Ýlter with the amplitude response of its subÝlters Ha(zM ), Hma(z),
and Hmc(z) shown in Fig. 2a and 2b, respectively, and the ampli-
tude response of the FRM Ýlter and its passband ripples shown
in Fig. 2c and 2d, respectively. The maximum passband ripple
was found to be 0.0674 dB and the minimum stopband attenuation
was 42.25 dB. By comparison, the passband ripple and stopband
attenuation of the design in [1] were 0.0896 dB and 40.96 dB, re-
spectively.

As can be seen from Fig. 2, the masking Ýlters Hma(z) and
Hmc(z) resulted from the joint optimization remain to be lowpass
with very similar passband widths, but the optimized prototype
Ýlter Ha(zM ) is not at all a lowpass Ýlter. Note that Ha(zM ) has
a sharp drop-down precisely at the passband edge (normalized to
0.3 in Fig. 2a).

3.2. FRM Filters with Low-Delay

A. Frequency response and its gradient

Since the group delay of an FRM Ýlter is dominantly con-
tributed by the prototype Ýlter, we assume here that the prototype
Ýlter is the only Ýlter with a nonlinear phase response in the en-
tire FRM Ýlter structure. A FRM Ýlter with passband group delay
Dr = dM + d1 is illustrated in Fig. 3, where the prototype Ýlter
has the frequency response

Ha(ejMω) =

N−1∑
k=0

hke−jkMω (11)
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Figure 2: Amplitude responses of (a) prototype Ýlter Ha(z9); (b)
masking Ýlters Hma(z), and Hmc(z); (c) FRM Ýlter; and (d)
passband ripples of the FRM Ýlter, all in dB.
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Figure 3: A basic FRM Ýlter with reduced group delay dM + d1.

The frequency response of the FRM Ýlter can be expressed as

e−jDrωH(ω, x) (12a)

with

H(ω, x) = H̃a(ω)[a
T
a ca(ω) − a

T
c cc(ω)] + a

T
c cc(ω) (12b)

H̃a(ω) = h
T

[c(ω) + js(ω)] (12c)

h = [h0 h1 . . . hN−1]
T (12d)

c(ω) = [cos Mdω cos M(d − 1)ω · · · cos M(d − N + 1)ω]
T (12e)

s(ω) = [sin Mdω sin M(d − 1)ω · · · sin M(d − N + 1)ω]
T (12f)

and aa, ac, ca(ω), and cc(ω) deÝned in (7). Note that because of
H̃a(ω) in (12c), H(ω, x) in (12b) is a complex-valued function,
where parameter vector x is deÝned as

x =

[
h

aa

ac

]

Now if the value of d is strictly less than (N − 1)/2, then the
Ýrst factor in (12a) with Dr = dM + d1 represents a reduced
group delay provided that the second factor in (12a), H(ω, x), best
approximates the zero-phase desired frequency response Hd(ω) in
(10).

The gradient of H(ω, x) is also complex-valued and is given
by g(ω, x) = gr(ω, x) + jg i(ω, x) where

gr(ω, x) =

[
y(ω)c(ω)

[hT c(ω)]ca(ω)
[1 − hT c(ω)]cc(ω)

]
(13a)

g i(ω, x) =

[
y(ω)s(ω)

[hT s(ω)]ca(ω)
−[hT s(ω)]cc(ω)

]
(13b)

y(ω) = a
T
a ca(ω) − a

T
c cc(ω) (13c)

B. Initial design
The initial design of the masking Ýlters Hma(z) and Hmc(z)

remains the same as in [1]. As well, one can use the formulas
there to predict the passband and stopband edges θ and φ. How-
ever, at this point one needs a lowpass Ýlter Ha(z) with ωp = θ,
ωa = φ and a reduced passband group delay d (strictly less than
(N − 1)/2). A reasonably good initial Ha(z) is the weighted
least-squares solution that minimizes

π∫
0

W (ω)|Ha(ejω) − H̃d(ω)|2 dω (14)

where

W (ω) =

{
1 for ω ∈ [0, θ)
w for ω ∈ [φ, π]
0 elsewhere

and

H̃d(ω) =

{
e−jdω for ω ∈ [0, θ)
0 for ω ∈ [φ, π] and elsewhere

It can be shown that the objective function in (14) is a strictly con-
vex quadratic function with a Toeplitz type Hessian matrix. Con-
sequently, the least-square solution can be computed efÝciently by
solving a Toeplitz system of linear equations [12].

Computer simulations have shown that the proposed method
works as expected. Design examples, however, are omitted here
due to space limitation.
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