
HIGH SPEED MEMORY EFFICIENT EBCOT ARCHITECTURE FOR JPEG2000

Hung-Chi Fang, Tu-Chih Wang, Chung-Jr Lian, Te-Ha0 Chang and Liang-Gee Chen

DSP/IC Design Lab
Graduate Institute of Electronics Engineering and Department of Electrical Engineering

National Taiwan University
I , Sec. 4, Roosevelt Rd., Taipei 106, Taiwan

{honchi, eric, cjlian, thchang, Igchen} @video.ee.ntu.edu.tw

ABSTRACT

This paper presents a high speed, memory efficient architecture
of embedded block coding with optimized truncation (ERCOT)
tier-l in JPEG2000. By parallel coding all the bitplanes, the state
variable memory can be eliminated. The proposed architecture
can process 50 M coefficients per second at LOO MHz, which can
realtime encode 720p resolution of HDTV picture format at 30 fps.

1. INTRODUCTION

JPEGZOOO [I]. 121 is the latest standard for still image coding. It
is well known by its excellent coding performance and abundant
features [3]. such as region of interest (ROI), scalability, error re-
silience, etc. Although these features can also be provided in JPEG
standard, some functionalities require supports at decoder side. On
the other hand, all these powerful tools can be provided in a single
JPEG2000 bitstream. For example, an image can be coded in loss-
less mode for storage and be retrieved at different bitrates. How-
ever, the high computational complexity that grants such excellent
performance and rich features restricts the real time applications
of JPEG2000.

EBCOT is the most complicated pan in IPEG2000 [4]. There
are various architectures of EBCOT proposed in previous arts [4],
[5], 161, [7] . All of them process the block bitplane by bitplane,
which is the default mode of JPEG2000 block coding. Although
the compression ratio of the default mode is the highest, it has
some drawbacks. First, the default mode performs bad at error re-
silience since the arithmetic encoder (AE) terminates at end of the
code block only. When an error occurs somewhere in a code block
all the rest data in the code block becomes useless. Second, the
hardware implementation of the default mode requires needs a lot
of memory to store the state variables. The memory requirement
analysis in [8] shows that 20K bits of internal memory are needed
for the block coding with 64 x 64 code block size.

The discrete wavelet transform (DWT), adopted by JPEG2000,
is a word-level processing. Since the block coding follows DWT
and processes in a bitplane by bitplane manner, there should be
some data conversion between these two parts. The block coder
access one bit of the coefficient at one time. If the coefficient
bitwidth is n, the subband memory will be accessed n times and
the power consumption will be large.

All these drawbacks can be solved with parallel processing.
As shown in the following sections, all the memory for state vari-
ables can be avoided, The power consumption of memory access

0-7803-776l-3/03/$17.00 82003 IEEE II-I36

(a) (b)

Figure I: (a) Scan pattern for bitplane coding. (b) Context window
for context formation.

can be reduced since the proposed block coder processes DWT co-
efficients at word-level as well as D W . Error does not propagate
across passes since AE terminates at each coding pass in parallel
mode.

Section 2 reviews the
ERCOT algorithm. The proposed EBCOT architecture is presented
at section 3. Implementation result and comparisons are shown at
section 4. Section 5 gives a brief conclusion ofthis paper.

This paper is organized as follows.

2. EBCOT ALGORITHM

JPEG2000 adopts ERCOT coding as its entropy coding algorithm.
The basic unit of EBCOT coding is a rectangle called code block.
Its size is typically 64 x 64 or 32 x 32. A code block is further
divided into stripes that are 4 x N rectangles, where N represents
code block width. The scan order is first column by column within
a stripe and then row by row for stripes as shown in Fig.](a). The
context of a sample coefficient is formed according to the signifi-
cant state of itself and its eight neighbors within a 3 x 3 window,
as shown in Fig. I(b).

The order of bitplane coding is from the MSR to the LSR.
Each bitplane contains three coding passes called significant prop-
agation pass (pass I), magnitude refinement pass (pass 2) and clean
up pass (pass 3). The exception is the MSB bitplane of the code
block, which has only one pass (pass 3). By examining the sig-
nificant states of the nine sample coefficients in the context win-
dow, the coding pass of the central sample coefficient can be de-
cided. The context is generated from the significant state of its
eight neighbors, each labelled as h0, h l . etc. in Fig. I(b). These

Figure 2 Performance comparison of default and parallel mode

G n B

Figure 3: Architecture of Parallel EBCOT

eight values are called HVD for a short hereafter. Finally, AE
processes the context and decision pair and outputs the bitstream
segment.

There are mainly two differences between the default and par-
allel EBCOT coding algorithms. First, AE should make termina-
tion at the end of every coding pass in parallel mode. By doing
so, each pass of the same bitplane can he coded in parallel. Sec-
ond, the sample Coefficients that come from the lower stripe are
considered as insignificant in parallel mode.

The performances of these two mode are almost the same as
shown in Fig. 2. The images are of size 512 x 512 and are coded
with 53 filter. The average PSNR degradations for 53 and 97 filters
are 0.17dB and 0.19dB respectively. Although the performance
of the parallel mode is slightly poorer than the default mode, the
parallel mode has some advantages. It is more robust in error-
prone environment than the default mode since AE terminates at
the end of every pass. When an error occurs, it influences only
the rest data in the same pass rather than the whole code block
in the default mode. And it requires only one scan to code the
three pass, while default mode needs three scans. In addition. it
is much easier for tier-2 implementation, which makes optimized
truncation by terminating AE at each pass.

3. PARALLEL EBCOT ARCHITECTURE

The proposed high speed and memory efficient parallel EBCOT
architecture is shown in Fig. 3. There are five major functional
blocks in our design. All of them process independently over hit-
planes except the MPASS module. The subband data after DWT
is fed into MPASS where the coding pass number of the MSB bit-
plane is calculated. Then, the pass and HVD data of all bitplanes

Figure 4 Gobang Register Bank. The circles represent registers
that contains input data.

are determined in the PHVD module. The CF module maps the
pass and HVD data into context-decision pairs and passes them to
the FIFO. Each AE handles two FIFO inputs and generates output
hitstreams.

The number of AE can he folded by two due to the properties
of DWT coefficients in EBCOT algorithm. The magnitudes of co-
efficients after DWT are not equal distributed and large coefficients
are much less then small one. And the number of contexts in a bit-
plane decreases dramatically from LSB to MSB. By these obser-
vations, we use one AE to deal with two bitplanes. Bitplane i and
Bitplane (n - 1 - i) use the same AE to encode bitstream, which
makes the hardware cost of AE half. The number n represents the
number of bitplane supported by the proposed architecture.

3.1. Gabang Register Bank

The input data is first stored and shifted in the Gobang Register
Bank (GRR). as shown in Fig. 4. The GRR reorder the input data
to other modules to meet IPEF2000 scan order. The data is first
rotated within each column to match the data flow of one column
in the stripe . When a column in the stripe is coded, i.e. every
four clock cycles, the data sample is shifted to next column for
the next column in the stripe. The two 3 x 3 windows, MPASS
and PHVD, indicate which registers are used in the MPASS and
PHVD module. The GRB contains 20 word-level registers instead
of 24 registers since the sample coefficients from next stripe are
considered zero.

3.2. MPASS

The major difference between parallel mode and default mode im-
plementations is the number of scans. Our parallel architecture
requires only one scan instead of three in the default mode. A
problem of determining significant state occurs when processing
three passes in one scan. Fig. 5 shows an example ofthis problem.
The meanings of circles are the same as those in Fig. I(b). The
value in circle represents the coefficient value. A gray circle rep-
resents that the coefficient has been significant in upper bitplane
while a white circle means not significant. Referring to the truth
table in this example, the contribution of coefficient at position VI

U-I31

-
C
1
1
I
2
I
2
3

2 1 3 1 1 0
2 1 1 1 0 1
1 3 3 1 0 0
a i s 1 1 1 - -

vl 63 1 1 I X I > 0 I

Figure 5: Example of relationship between coding pass and signif-
icant contribution.

is influenced by the coding pass i t belongs. As a result we must
have the pass information of all the neighbors in order to calculate
the correct HVD data. However, we need not to get the pass infor-
mation of every bitplane. Because the significant state is always 1
in bitplane lower than MSB and is always 0 in bitplane higher than
MSB regardless of the coding pass. The MSB is only one hitplane
that the updated significant state differs to the one before update.

The MPASS module is designed to solve this problem. The
block diagram of MPASS is shown in Fig. 6. The circles represent
the registers in GRB. Each square represents a processing element
(PE) and the pseudo-code is shown in Fig. 6. The coding pass of
the MSB of the central coefficient is called “mp” and is merged
into the data flow with the coefficient in GRB. The signal “mp.w”
is the mp of the neighboring coefficient since it is coded before the
central coefficient. If all the contributions of eight PES are zero,
mp of the central coefficient is zero; otherwise, it is one.

3.3. PHVD

PHVD module determines the codinp pass andcalculates the HVV
values to form the context. The block diagram of PHVD and the
truth table of the PES are shown in Fig. 7. The mps and mp indi-
cate the coding pass of MSB of the central and neighboring coef-
ficients. The input “fo” indicates whether the bitplane is the MSB.
The input “sig” indicates if the bitplane is lower than MSB. The in-
put “cnt” is the counter corresponding to the position of the central
coefficient in the stripe. When cnt is zero, the central coefficient
in MPASS module is the first pixel in a column. Due to pipeline,
the central coefficient in PHVD is the first coefficient in the stripe
when cnt is 1. The outputs of the PES are call contribution (cont).
Both the coding pass and HVD values are determined by the con-
tribution of these neighbors. There are three kinds of PES in PHVD
which calculate the contribution of the corresponding sample co-
efficient. PE0 is responsible for the neighbor which is coded after

Figure 7: Block diagram of PHVD module.

i f 1 the sample coefficient is below the HSB I
coding pass - pass 2 ;

if 1 all the neighboxs are insignificant >
coding pass ~ pass 3 ;

coding pass - pass 1;

Figure 8: Pseudo code which determines the coding pass.

the central coefficient. And PE1 is responsible for the neighbor
which is coded before the central coefficient. The coefficient cor-
responding to PE2 is a special case. It comes from the previous
stripe when cnt is I and from the same stripe at other cases of cnt.
So it is coded before the central coefficient when cnt equals 1 hut
after the central coefficient at other cases. The pseudo code which
determines the coding pass of the central coefficient is shown in
Fig. 8. The outputs of the PES are grouped as horizontal (HI, ver-
tical (V) and diagonal (D) as the context window in Fig. I(b). And
the HVD data is calculated by adding the contributions in the same
group. Note that the PHVD window is not the same as in MPASS
since all the coefficients in the PHVD window must go through
MPASS module.

3.4. Context Formation

The block diagram of context formation module is shown in Fig.
9. The coeff indicates the four sample coefficients in the same
column of a stripe. RunJength is an flag indicating whether the
column should be coded in run-length mode or not. Sigma is also
a Rag representing the first magnitude refinement. Band indicates
which subband the code block belongs. C t x d r is the context and
decision of the sign of the sample coefficient,

The CF module works as follows. First, pass and HVD data
come from previous module, PHVD, are used to check the context
of the sample coefficient. The R module is a register. The ZC
and MR module map the pass and HVD data into zero coding and
magnitude refinement. In order to cope with the Nn-length code,
we must keep the first three contexts in a column of stripe. Finally,
the contexts and decisions are generated by the run length code
(RLC) module. Note that there are variable number of contexts
generated, from 0 to 4, when coding a sample coefficient.

3.5. FIFO

Because the output rate of CF module is not identical with that
of AE, we need a fifo between these two modules. The length

II-738

the processing time of the proposed architecture is not proportional
to the number of bitplanes.

Figure 9: Block diagram of context formation module.

of fifo is chosen as fifteen, experimentally. Each fifo contains a
pass (2 bits) and four context-decision pair (each 5 bits). Because
the coding pass is indicated explicitly, the number of hit used to
represent context is reduced to 4 bits. 10 FlFOs are used since
there are 10 magnitude bitplanes in our architecture.

3.6. Arithmetic Encoder

Although one sample coefficients belongs to only one of three
passes, we must have three sets of probability estimation table and
other state variables in the AE. The memory requirement is double
since we have two bitplane that use a common AE. Note that the
probability estimation tables are separated by coding passes and
some context that will not appear in the certain coding pass can
be eliminated. For example, run-length context will nul appear in
pass 1 and pass 2 and should be removed from the tables. By doing
so. the area of AE can he further reduced.

4. IMPLEMENTATION RESULT AND COMPARISONS

4.1. Implementation

The proposed architecture is synthesized using TSMC 0.35 p n
CMOS tcchnolugy. The gate count and memory requirement of
our proposed architecture are listed i n Table I . The size of the
code block is 64x64 and the coefficients bitwidth is I 1 bits.

CF 14803 64x 12
FIFO NA (15X22)XIO
AE 11536x5 (72x 6) x 5

4.2. Comparisons

Table 2 lists the processing time of a code block. The number N
represents the width of the code block and n represents the number
of bitplanes. As we can see, the number of speed-up is about n
than Chen's and Chiang's and is almost 30 than Taubman's if the
number of non-zeru bitplane is less than 6. And when the number
of non-zero bitplanes is lager than 6, the speed up is half. Besides,

Table 2: Processing Time Comparison with Other Architectures
average processing time

(3 x (n- I)+ l) x N2 [91'S
[4l's 1.3 x nx N2
~ 7 1 3 nxNZ

proposed (I+&) x N2
6 is about 0.1 to 0.2 when the nonzero bitplanes are smaller
than or equal to 5 and close to 1 when larger than 5.

5. CONCLUSIONS

In this paper, a high performance, memory-saving parallel archi-
tecture of EBCOT tier-l for JPEG2000 is proposed. All the bit-
planes are coded in parallel in our architecture. The state vari-
able memory can be eliminated by the proposed method. And the
processing rate is several times then other architectures previously
proposed in the literature. The proposed architecture processes
50M coefficients per second at IOOMHz, regardless of the bitwidth
of the coefficients, and can encode lossless HDTV 720p resolution
pictures at 30 fps in real time.

6. REFERENCES

[I] ISO/IEC JTCI/SC29/WGI N1855. JPEC 2000 Part I : Final
Drafr Inrernarional Standard (lSO/lEC FDIS15444-I), Aug.
2000.

[21 ISOIIEC JTCI/SCZWWGI N1271, JPEGZOOO Requirements
and Profiles, Mar. 1999.

[31 Skodras A.. Christopoulos C., and Ebrahimi T.. "The JPEG
2000 Still Image Compression Standard:' IEEE Signal P m -
cessing Mag., vol. 18, no. 5 . pp. 3 6 5 8 , Sept. 2001.

[4] K. F. Chen, C. J. Lian, H. H. Chen, and L. G. Chen, "Anal-
ysis and Architecture Design of E B C m for JPEG-2000," in
IEEEE Inr. Symp. Circuits and Sysrems (ISCAS 2001). 2001,
pp. 765-768.

151 Kishore Andra, Chaitali Chakrabarli, and Tinku Acharya, "A
High Performance JPEG2000 Architecture," in IEEEE Inf.
Symp. Circuits and Systems (ISCAS 2002), 2002, pp. 765-768.

[61 Y. T. Hsiao, H. D. Lin, and C. W. len, "High-speed Mem-
ory Saving Architecture for the Embedded Block Coding in
IPEG2000," in IEEEE Inr. Symp. Circuits and Sysrems (IS-
CAS 2002). 2002, pp. 133-136.

"Efficient Pass-
Parallel for EBCOT in JPEG2000," in IEEEE Int. Symp. Cir-
cuits and Systems (ISCAS 2002), 2002, pp. 773-776.

[E] D. Taubman, E. Ordentlich, M. Weinherger, and G. Serourssi,
"Embedded Block Coding in JPEG 2000," in Proc. IEEE Int.
Conf: linage Processing (ICIP 200O), 2000, pp. 33-36.

191 ISOIIEC JTCl/SC2Y/WGl N1684, JPEC-2000 Verificarion
Model 7.0 (Techinical Description), Apr. 2000.

[7] J. S . Chiang, Y. S . Lin, and C. Y. Hsieh.

II-I39

