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ABSTRACT 

Closed form expressions are presented for the first and second 
moment of the impulse response for arbitrarily-coupled RC trees 
with multiple drivers, and used to generate accurate second order 
estimations of the transfer function from any driver to the 
receiver. The superposition of the waveforms for all switching 
events allows precise delay and noise calculations for systems of 
coupled interconnects with different aggressor arrival times, 
with a minimum of computational complexity. 

1. INTRODUCTION 

As gate transition times decrease and wiring density 
increases, particular attention has to be paid to noise modeling 
and its impact on performance and functionality. Delay models 
that account for the coupling noise induced by a number of 
switching neighboring aggressors on a victim signal are neces- 
sary. Finding the response of such systems requires the analysis 
of general arbitrarily-coupled trees. However the computational 
overhead associated with numeric techniques such as Spice is 
usually unacceptable for large designs. This has led to a prolifer- 
ation of research in the past twenty years in the area of delay and 
noise modeling, with the aim of developing simplified metrics 
that still give acceptable accuracy. In the rest of this document, 
the term simple tree is used to refer to a tree that has capaci- 
tances only to ground, and coupled tree to refer to a tree that con- 
sists of simple trees coupled to each other through series 
capacitors. 

There is a large body of literature that deals with delay mode- 
ling in simple trees. One of the most important and widely used 
metrics, the first moment of the impulse response, was proposed 
back in 1948 as an upper bound for the delay in valve circuits[l], 
and is known as the Elmore delay. Subsequently the authors of 
[2] developed tighter bounds and metrics that gave an indication 
of when the Elmore model was poor. Its attraction is that it is 
very simple, and yet exhibits goodfidelity, giving results as good 
as more expensive models when used as a metric in interconnect 
optimization algorithms. A model based on the first and second 
moment of the impulse response, and the sum of the open circuit 
time constants was proposed in [3], which gives a stable approx- 
imation to the second order transfer function for simple trees. 
Since then, generic moment based techniques have been devel- 
oped which are applicable to any linear circuit, and allow the 
calculation of an arbitrary number of poles [4]. In today’s sys- 
tems, delay and noise calculations are essential at an early stage 
in the planning process. However the complexity is such that 

generic moment matching and model order reduction techniques 
which require the formulation of nodal matrices and costly 
matrix manipulations are too expensive. Hence a lot of simpli- 
fied models have been proposed. The models of 131 represent the 
mnnimum complexity for second order approximations of simple 
trees. In [5] the authors explicitly match the first three moments 
of the impulse response to a second order model in a methodol- 
ogy that guarantees stability. In [6] a heuristic delay model based 
on the first two moments was proposed. 

In analyzing coupled trees, most research has concentrated on 
certain simplified configurations of interest. In [7] the authors 
present two pole delay models for a single n section, and extend 
it to accommodate multiple segmented aggressors in [8], but the 
allowed topology is still limited. In [9] the authors use circuit 
transformations to simplify a general tree to a 2-n model when 
analytic formulae can be used, but intermediate steps require the 
calculation of admittances at each branch point and the estima- 
tion of equivalent capacitances which increase run time and 
impact on the accuracy respectively. In [lo] a technique is pre- 
sented to generate the poles of a system with n storage elements, 
which has long been used i n  analog design to estimate the band- 
width of amplifiers. The complexity of the computation is pro- 
portional to nu where a is the order of the pole. There are works 
which use this technique to estimate the two lowest frequency 
poles and use them to model the response for all switching 
events on the tree [ 1 I][ 121. This can result in unacceptable accu- 
racy, as the poles which determine the response for different 
switching events can be very far apart on the frequency axis. If 
used to generate higher frequency poles, this estimation tech- 
nique will become prohibitively expensive. 

In this paper we propose metrics based on the first and second 
moment of the impulse response to generate second order trans- 
fer functions from each driver to the receiver in arbitrarily-cou- 
pled trees, which allow both delay and noise estimations. Our 
contributions are that the moments are matched to the character- 
istic time constants in a novel way which minimizes computa- 
tional complexity while allowing good accuracy, and that the 
moments themselves are calculated from completely accurate 
closed form expressions which are only slightly more complex 
than the Elmore delay, while retaining all its elegance. In this 
paper we are only concerned with the generation of the transfer 
function, which is the most important aspect of the modeling. 

2. MODELING 

The modeling requires the matching of easily calculable met- 
rics of the circuit to the system transfer function. This involves 
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Figure 1. Example coupled RC tree 

ascertaining the characteristics of the transfer function, calculat- 
ing the metrics and then matching them to the terms in the trans- 
fer function. 

A coupled RC tree is characterized by a resistive path from the 
receiver node e to the forcing (victim) driver, and series capaci- 
tive elements to other (aggressor) drivers. Hence when the victim 
driver switches the output will always change rails, while it will 
start and end at the same rail for an aggressor switching. There- 
fore the transfer functions characterizing the response to the vic- 
tim switching and any of the aggressors switching are different. 
The former will have a zero on the negative part of the real axis: 

while the latter will have a zero at the origin. 

5 U; 

= ( 1  + S Z , ) ( l  +SZ2) 

2.1 Calculation of moments 

In the following section, expressions are presented for the first 
and second moment of the impulse response for general coupled 
trees, which form the core of our models. The derivation is based 
on Kirchoff's laws and integration by parts, and is omitted due to 
lack of space. Shown in Fig. 1 is an example of a coupled tree 
which can be referred to in the following descriptions. First our 
notation is described below. 

CSE = capacitance to ground at node k in pth tree 

CG," = capacitance between node k on pth tree and node j on qth 
! tree (first sub(super)script refers to reference tree) 

Rlk), = resistance shared on paths between source to nodes e and k 
on tree p 

T; = nth moment of the impulse response at the kth node 

It should be noted that superscripts always refer to simple trees 
while subscripts always refer to nodes, except in the definition 
for moments, where the superscript refers to the order of the 
moment. Additionally, rail voltages are normalized to 0 and 1, 
and the expressions always derived for a positive step without 
loss of generality. 

The first moment of the impulse response at the receiver node 

e for the victim driver switching is given by: - 
0 

Now the impulse response is the first time derivative of the step 
response, for which an expression can be formulated by sum- 
ming up all capacitor currents. This can then be integrated by 
parts to yield (4), where a,, a2.. are the aggressors. 

k e  v ic t im 

The second moment of the impulse response at e is given by: - 
0 

Following the procedure described above in two stages, this can 
be shown to be equivalent to (6). 

From an approach identical to the former case, the first 
moment of the impulse response at node e on the victim tree for 
aggressor ai switching can be shown to be: 

k E v ic t im 

and the second moment: 

k e  v ic t im 

+ C C y ' [  R:,(CS$+ CC$'y+ CC$''+ ...)I) 
K E  a.  

= -2@j2 

The expressions in (4), (6), (7) and (8) form the basis of our 
proposed models. An examination of these reveal their similarity 
to the Elmore delay, and all the accompanying characteristics 
that make the estimation algorithms very efficient. 

2.2 Matching moments to the characteristic 
time constants in the circuit 

The moments can be matched to the characteristic time con- 
stants in the circuit by using the identity that the nlh moment of 
the impulse response is (-ly times the nlh derivative of the trans- 
fer function evaluated at s=O. This identity used on ( l ) ,  (4) and 
(6) results in: 
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Now additional information is necessary to solve for the three 
unknowns in (9) and (10). If the reciprocal pole sum is desig- 
nated as these two equations can be combined to form the 
following quadratic, which yields two time constants. 

v 2  (1  1) T* - T,sumT + T;eT.sum - ( T q )  = 0 

The mathematical basis of our reduced order model is that 
geometric attributes (area and first moment of the area) and the 
values at t=O and t - w  of the estimated and actual waveform are 
equated. Since the initial and final values are already considered 
in the formulation of the transfer function, additional information 
is necessary to solve for the two poles and zeros associated with 
a switching event. At this point, it is helpful to look at the physi- 
cal interpretation of the first and second moments of the impulse 
response. The first moment always considers resistances of the 
switching line, and either all capacitances connected to the 
switching line (in the case of the victim driver switching) or 
capacitances connecting it to a particular line (for the switching 
of an aggressor driver). The second moment propagates outwards 
another level, and considers the resistances and capacitances of 
immediately adjacent lines as well. This intuition is valuable in 
generating a solution with minimum computational complexity; 
namely, equation (1 1) can be used to generate the pole time con- 
stants for all switching events, by using the appropriate recipro- 
cal pole sum. 

For the victim switching, the metric that gives the best solu- 
tion is the sum of the open circuit time constants with reference 
to the victim driver, which we shall call T;. This is simply the 
summation of the products of all capacitances connected to the 
victim line with the driving point resistance to each of those 
capacitors. This is a good approximation for the sum of the pole 
time constants[lO], giving: 

Condition 

no violation 

To solve for the poles and zeros associated with an aggressor 
switching, the above identity is used on (2 ) ,  (7) and (8) to give: 

‘S”,,, 

[ r u i  )*/:i 
Go De 

Now the zero time constant is available immediately, and divid- 
ing (14) by (1 3) results in the reciprocal pole sum: 

The pole time constants can be obtained by substituting (15) as 
T ~ ~ , , ,  in (1 1). Since minimum information is used for both cases, 
some slight modification is necessary to guarantee stability, as 
explained below. 

The conditions for potential instability can be identified by 
analyzing the quadratic which yields the time constants. The first 
limiting condition is that the magnitude of the square root should 
be greater than the reciprocal pole sum, which yields: 

v 2  v (A) 
‘sum ’ (‘SG,) I’D, 

The second is that the sign under the radical is negative, which, 

Table 1. Different values for T~,,, for an aggressor switching 

I I 

after some simplification, results in the following: 

An inspection of the relevant expressions shows that the only 
possible violation in the case of the victim driver switching is 
(B). i.e. very occasionally, using T,* can result in complex poles. 
The physical interpretation of such an occurrence is that the sum 
of the open circuit time constants underestimates the reciprocal 
pole sum, which has been unusually escalated by an aggressor or 
aggressors with exceptionally high parasitics. Because both 
exponential waveforms are either additive or subtractive unlike 
when an aggressor switches (where one is additive and the other 
is subtractive), the higher frequency pole does not have a signifi- 
cant impact. In fact, this form of instability is usually an indica- 
tion of a very low frequency pole which makes the prediction of 
the waveform straightforward. The simplest remedy therefore is 
to consider a single pole response, with the pole time constant 

being given by TLc, which results in good accuracy as shown in 
the results section. 

For the case of an aggressor driver switching, the only possi- 
ble violation is (A). This is in fact the more common form of 
instability encountered and occurs when the dominant poles for 
the victim and the particular aggressor are very far apart on the 
frequency axis. Physically, this translates to a situation where the 
receiver node is charged extremely rapidly by a very strong 
aggressor (i.e. through a relatively very small time constant), and 
decays with a very long tail, dictated by the much larger time 
constant of the victim. Such behavior is common for far end cou- 
pling, The instability in the solution predicted by (1 1) occurs 
because the reciprocal pole sum given by (15) accurately reflects 
the high frequency nature of the poles in the aggressor’s charging 

path, but 7Le and (x;)* reflect the much lower frequency con- 

tent of the victim’s dominant poles, and the gap is too much to 
bridge. The solution without generating extra information about 
the circuit, is to accept the next best approximation. That is to 
say, if T~”,,, is so small that it violates inequality (A), the simplest 
and most logical remedy is to increase T,,,,, so that real roots are 
generated. Since the equality will generate coincident poles 
which is not acceptable, the exact value should be chosen so that 
it is slightly greater than the equality, which can be achieved with 
a percentage factor, such as 1%. This yields accurate results, 
because the intention is to generate the best fwo pole single zero 
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Error a1 25% = 3% 
Errorat peak = 1% 
Error at 25% = -1% 

eak Noise Error = 7 1  

.I.’ 

-.-- 
Noise Error ii 4% 

Fig.5.a Victim Switching Fig.5.b Tree B Switching Fig.5.c Tree A Switching Fig.5.d Tree C Switching 
Figure 2. Response to different switching events 

model; in other words the poles and zero need not equate to 
actual poles and zeros of the system, and indeed should differ for 
a second order approximation. Using the factor of 1% beyond the 
threshold which yields coincident poles ensures that both the 
high and low frequency behavior is matched. Following this 
approach, the values that T~”,,, should take in the different cases 
are summarized in Table 1. 

3. RESULTS 

The proposed metrics were tested on several different test 
beds which cover a wide range of topologies and all the corner 
cases where conditions (A) and (B) are violated, by comparing 
the step response for different switching events with Spectre sim- 
ulations. Due to space restrictions, only the results pertaining to 
the tree shown in Fig. 1 consisting of the victim, three primary 
aggressors, and three secondary aggressors are presented. Shown 
in Fig. 2 are the waveforms (step response) at the receiver node e 
for each driver switching. It can be seen that the model prediction 
is very close to the Spectre simulation. In the case of the victim 
switching, inequality (A) is violated, and the single pole response 
shows good accuracy. Since the actual and predicted delay at a 
single threshold can agree very well, and still result in significant 
deviations along the full waveform, we tested the accuracy at 
three points along the waveform. For the victim switching, the 
thresholds are lo%, 50% and 90%, while for the aggressors they 
are 25%, 50% and 75% of the peak amplitude. The error at dif- 
ferent thresholds is given as a fraction of the pulse width from v, 
to vj for the aggressors. 

4. CONCLUSIONS 

Closed form expressions for the first two moments of the 
impulse response for general coupled RC trees were presented, 
and used to generate second order approximations to the transfer 
function for any switching event with guaranteed stability. The 
summation of all waveforms results in the complete response at 
the node of interest. The new models we propose represent the 
minimum complexity for second order estimations of coupled 
trees when generality is not compromised, and in fact subsume a 
lot of models that address simplified structures. For testing pur- 
poses, these expressions were used to derive the time domain 
waveform for the step response. The accuracy with which the 
delay at a given threshold is predicted was found to be more than 

90%, even for complex circuits such as shown in Fig. 1. The 
peak noise was predicted with similar accuracy on circuits repre- 
sentative of nano meter interconnect structures. The simplicity 
and accuracy of the models combined with their generality 
should make them useful in delay and noise estimations in com- 
plex systems, early in the design flow. 

5. REFERENCES 

[ 11 W. C. Elmore, “The transient response of linear damped cir- 
cuits,” J. Appl. Physics, vol. 19, pp-55-63, Jan. 1948. 

[2] J. Rubinstein, P. Penfield, and M. Horowitz, “Signal delay in 
RC tree networks,” IEEE Trans. Computer-A ided Design, 
vol CAD-2, no. 3, pp. 202-21 1, Jul. 1983. 

[3] M. A. Horowitz, “Timing models for MOS circuits,” Ph.D. 
dissertation, Stanford Electronics Laboratories, Stanford 
University, Stanford, CA, Jan. 1984. 

[4] L. T. Pillage and R. A. Rohrer, “Asymptotic waveform evalu- 
ation for timing analysis,” IEEE Trans. Computer-Aided 
Design of ICs and Sys., vol. 9, pp. 352-366, Apr. 1990. 

[5] B. Tutuianu, F. Dartu and L. T. Pillage, “An explicit RC-cir- 
cuit delay approximation based on the first three moments of 
the impulse response,” in Proc. DAC, 1996, pp. 611-616. 

[6] C.  J. Alpert, A. Devgan, and C. V. Kashyap, “RC Delay met- 
rics for performance optimization,” IEEE Trans. Computer- 
Aided Design of ICs and Sys., vol. 20, no. 5 ,  pp. 571-582. 
May 2001. 

[7] A. B. Kahng, S .  Muddu, and D. Vidhani, “Noise and delay 
uncertainty studies for coupled RC interconnects,” in Proc. 
ASICBOC, 1999, pp. 3-8. 

[8] A. B. Kahng, S. Muddu, N. Pol, and D. Vidhani, “Noise 
model for multiple segmented coupled RC interconnects,” in 
Proc. ISQED, 2001, pp. 145-150. 

noise estimation for generic RC trees”, in Proc. ICCD, 2001, 
[9] M. Takahashi, M. Hashimoto, and H. Onodera, “Crosstalk 

pp. 110-116. 
[10]B. L. Cochrun and A. Grabel, “On the determination of the 

transfer function of electronic circuits,” IEEE Trans. Circuit 
Theory, vol. CT-20, pp.16-20, Jan. 1973. 

[ 111X. Tong and M. Marek-Sadowska, “Efficient delay calcula- 
tion in presence of crosstalk,” in Proc. ISQED, 2000, pp. 

[ 121L. H. Chen and M. Marek-Sadowska, “Efficient closed-form 
cross-talk delay metrics,” in Proc. ISQED, 2002, pp. 43 I - 
436. 

49 1-497. 

IV-607 

Authorized licensed use limited to: Lancaster University Library. Downloaded on May 07,2010 at 13:36:15 UTC from IEEE Xplore.  Restrictions apply. 


