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ABSTRACT

Load cell response correction can be used to speed up the
process of measurement. This paper investigates the appli-
cation of analog adaptive techniques in load cell response
correction. The load cell is a sensor with an oscillatory out-
put in which the measurand contributes to response param-
eters. Thus, a compensation filter needs to track variation
in measurand whereas a simple, fixed filter is only valid at
one load value. To facilitate this investigation, computer
models for the load cell and the adaptive compensation fil-
ter have been developed and implemented in PSpice. Simu-
lation results are presented demonstrating the effectiveness
of the proposed compensation technique.

1. INTRODUCTION

Load cells are used in a variety of industrial weighing appli-
cations. Since information processing and control systems
cannot function correctly if they receive inaccurate input
data, compensation of the imperfections of the sensors is
one of the most important aspects of sensor research. In-
fluence of unwanted signals, non ideal frequency response,
parameter drift, non-linearity, and cross-sensitivity are the
five major defects in primary sensors [2]. In the new gen-
eration of sensors, called intelligent or smart sensors, the
influence of these imperfections has been dramatically re-
duced by using signal processing techniques.

Some sensors such as load cells have an oscillatory out-
put, which need time to settle down. For dynamic mea-
surement, it is important to make a decision on the mea-
surand as fast as possible. Dynamic measurement refers
to the ascertainment of the final value of a sensor signal
while its output is still in oscillation. It is used to speed
up the process of measurement. One example of process-
ing that can be done on the sensor output signal is filtering
to achieve response correction. Several methods have been
reported addressing this problem. Software techniques for
sensor compensation are reviewed in [1]. Digital adaptive
techniques have been used in [7] for load cell response cor-
rection. An artificial neural network has been proposed
for dynamic measurement which needs a learning phase [8].
Other methods such as employing kalman filter [5] and esti-
mation with recursive least square (RLS) procedure [6] have
also been applied for dynamic weighing systems. Almost all
the above reported methods are based on digital signal pro-
cessing techniques which need analog-to-digital convertors
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Figure 1: General principle of load cell response correction

and powerful signal processors. Although digital techniques
have been used efficiently, the aim of this paper is to inves-
tigate the possibility of using analog adaptive techniques
for load cell response correction. The potential benefits
of analog adaptive techniques compared to digital methods
include higher signal processing speeds, lower power dissi-
pations, and smaller integrated circuit areas. It should be
noted that most applications of analog adaptive techniques
have focused on communications and digital magnetic stor-
age [3] and there has been little or no work on application
of analog adaptive techniques to intelligent sensors which is
the main focus of this paper.

2. LOAD CELL RESPONSE CORRECTION

The primary sensor is considered as a system with trans-
fer function G(s). The general principle for eliminating the
transient time is shown in Fig.1. A filter having the recipro-
cal characteristic of the sensor is cascaded with it. There-
fore, the transfer function of the whole system is “unity”
which means that any changes in the input transfer to the
output without any distortion. The response of a load cell
can change for different measurands. For example, the char-
acteristic of a load cell changes when a load is applied to
it because the mass of the load contributes to the inertial
parameters of the system. Therefore the transfer function
of the filter should change accordingly. In other words, a
fixed filter can be used only for one specific load value.

The general equation for the dynamic response of the
load cell is given by [7]:

(m + m0) · d2y(t)

dt2
+ c · dy(t)

dt
+ k · y(t) = F (t) (1)
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Where m is the mass being weighed, m0 is the effective mass
of the sensor, c is the damping factor, k is the spring con-
stant, and F (t) is the force function. The Laplace transfer
function of this sensor is

G(s) =
Y (s)

F (s)
=

1
m+m0

s2 + c
m+m0

s + k
m+m0

=
g

s2 + ω0
Q

s + ω2
0

(2)
This shows that m affects all inertial parameters of the sen-
sor such as gain factor , g , quality factor , Q , and natural
frequency , ω0.
Eq. 2 yields a pair of complex conjugate poles a± jb where

a = − c

2(m + m0)
(3)

and

b =

√
k

(m + m0)
− c2

4(m + m0)2
(4)

Thus the zeros of the adaptive filter, which are the poles of
the sensor can be obtained.

In general, assume w is defined as a vector that contains
all of the parameters of adaptive filter i.e.

w = [w1 w2 w3 . . .]T (5)

The elements of w can be calculated for different values
of the measurand. To emphasise that w depends on m, it
can be written as w(m). m is unknown in the first instance
when a new measurement begins. Therefore the parameters
of the adaptive filter can not be set to appropriate values in
order that the filter behaves as an inverse system. Hence,
an adaptive rule is required to modify the parameters of the
adaptive filter according to the value of measurand. This
rule is a crucial element but there is not a straightforward
solution for it. Usually, in classic adaptive techniques, an
adaptive algorithm, such as LMS, updates w to minimize
a cost function. However, Eq.(2) shows that, for a load
cell, the suitable filter has a pair of conjugate zeros, z1,2 =
a± jb, which, a and b can be considered as the parameters
of adaptive filter and the relationship between them and
load can be modelled as in Eqs.(3) and (4). The real-time
measurement operation is shown in Fig.2. In this block
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yx

a=p (y)

b=p (y)
1

2

H(a + jb)_

Adaptive Filter

Figure 2: Block diagram showing the adaptive load cell
response correction method

diagram m has been substituted with y, the output of the
whole system, which is proportional to m. Initially the zeros
of the filter are set to arbitrary values. Then the the output
y is calculated. This new value of y is used to calculate the

zeros of the filter once again. Repeating these steps results
in a rapid approach to obtain the steady state value of y.

So far the zeros of a 2nd-order compensation filter have
been examined. In order that the analog filter can be re-
alised, it is necessary to add at least two poles to the filter.
The values of these poles can be determined practically.
For simulation purposes, these poles are selected by trail
and error so that the output of the filter quickly reaches its
steady-state value with minimum oscillation. The transfer
function of the compensation filter is

H(s) =
(m + m0)

10−5
·
s2 + c

m+m0
s + k

m+m0

s2 + 600s + 105
(6)

The transfer functions of the load cell (Eq. 2) and its
compensation filter (Eq. 6) are biquadratic functions. There
now exists a wealth of theoretical and experimental infor-
mation on the design of fixed or non-adaptive analog bi-
quads [4]. The problem is how to make a biquad adaptive
and it is necessary to have only one filter component to track
changes in m without any influence on the other parameters
such as damping factor, c, and the spring coefficient, k.

3. LOAD CELL MODEL

Amongst the various biquad structures, the state-variable
lowpass filter [4], shown in Fig.3, can be used to model the
behaviour of the load cell.
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Figure 3: State-variable lowpass filter

The state-variable filter transfer function is:

Tsv(s) = K1

1
R8R9C1C2

s2 + K1( R1
R2R8C1

)s + R10
R3R8R9C1C2

(7)

where

K1 =
R2(R3 + R10)

R3(R1 + R2)
(8)

Comparing this transfer function with the load cell transfer
function, Eq.(2), shows that R8 can model (m + m0). R8

has to be split into a fixed resistor equal to m0 and a resis-
tor proportional to m. Since m is the mass being weighed
and in the model it is equivalent to stimulating voltage (Vi),
the resistor has to be a voltage-controlled device whose re-
sistance can be varied with Vi. With analog behavioural
modeling facility in PSpice, it is possible to simulate such
a resistor. This is achieved by using the G component(a
voltage-controlled current source) and ”TABLE” which al-
lows the user to enter different resistors for different volt-
ages. Using this voltage-controlled resistor in the lowpass
filter (Fig.3) produces an analog biquadratic filter which
can model the behaviour of the load cell. The complete
model is depicted in Fig.4. From experimental data for a
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Figure 4: Load cell model

particular load cell [8] the damping factor c, spring constant
k, and the effective mass of the load cell m0, are 3.5, 2700
Pa, and 0.5 kg, respectively. These numbers are used to
determine the values for resistors and capacitors in Fig.4.

For step excitation, the input voltage of the model is a
step function whose amplitude is proportional to m. The
simulation results for two different values of m are shown in
Figs.5 and 6 which indicate that changing the input, similar
to the practical case, varies all inertial parameters of the
output waveform such as the steady state value, resonant
frequency and damping factor.
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Figure 5: Output of the load cell model for m = 0.1kg
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Figure 6: Output of the load cell model for m = 1kg

4. ADAPTIVE COMPENSATION FILTER
MODEL

Since the transfer function of the compensation filter (Eq. 6)
is a biquadratic function, different scaled outputs in the
state variable filter, shown in Fig.3, need to be added to
form a complete biquad. To make this biquad adaptive, as
described in the block diagram of Fig.2, the filter’s zeros
have to be changed by the output of the biquad. Simi-
lar to the sensor model approach, it is possible to use a
voltage-controlled resistor in the compensation filter. The
filter output voltage is used to control this resistance. The
complete adaptive biquad is shown in Fig.7. The transfer
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Figure 7: Adaptive compensation filter model

function of this filter is

H(s) = K
s2 + R6(R4+R5)

R5R8C1(R6+R7)
s + R4

R5R8R9C1C2

s2 + K1( R1
R2R8C1

)s + R10
R3R8R9C1C2

(9)

where

K = K1
R5(R6 + R7)

R7(R4 + R5)
(10)

and K1 was previously defined in Eq.(8). Similar to the
sensor model, R8 consists of a fixed resistor and a voltage-
controlled resistor whose resistance is controlled by the fil-
ter’s output voltage. In other words R8 models (m + m0).

The adaptation sequence can be described as follow.
Before stimulating the load cell, filter output voltage is zero
and the initial transfer function of the filter will be

H0(s) = g · (s − a0 − jb0)(s − a0 + jb0)

(s − d − je)(s − d + je)
(11)

Where g is the gain factor of the filter, a and b are the real
and imaginary parts of filter’s zeros respectively, d and e
are real and imaginary parts of filter’s poles respectively,
and the subscript ( 0 ) denotes the initial values. The zeros
of the filter need to cancel the poles of the sensor i. e. a
and b are the same as eqs.(3) and (4). Since a and b depend
on m ( the output of the filter) which is unknown at first,
they cannot be fixed values. The initial values for a and b
are:

a0 = − c
2(0+m0)

and b0 =
√

k
(0+m0)

− c2

4(0+m0)2

When the input is applied to the filter with initial transfer
function of H0(s), it produces an output, say m1. Since the
zeros of the filter change with the output voltage, the new
values for a and b will be a1 and b1 and then the transfer
function of the filter changes to

H1(s) = g · (s − a1 − jb1)(s − a1 + jb1)

(s − d − je)(s − d + je)
(12)

With this new transfer function, the filter produces a new
output that changes the filter’s zeros again and this proce-
dure continues until a and b converge to their final values.

It should be noted that the poles of this compensation
filter (Eq. 9) vary as m varies, which is not the case with
the filter model (Eq. 6). However, this does not represent a
problem because the load cell does not have any zeros and
for pole-zero cancellation only the zeros of the filter are
important. In addition, the variation of filter’s poles can
be tolerated as long as the filter remains stable and does
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not create significant oscillation in the output. To examine
the stability of the adaptive compensation filter, its transfer
function is considered as follow

H(s) = g ·
s2 + c

m+m0
· s + k

m+m0

s2 + 600
m+m0

· s + 105

m+m0

(13)

The poles of the filter are : p1,2 = d ± je where

d = − 600
2(m+m0)

and e =
√

105

(m+m0)
− 6002

4(m+m0)2

As m varies from its initial value, m = 0kg , to its final
value, for example m = 1kg , the real and imaginary parts
of the filter’s poles, d and e will change. The root locus of
the filter’s poles in s-plane is shown in Fig.8. This figure

Figure 8: Filter poles root-locus for m from 0 to 1kg

shows that the poles of the filter remain in the left hand
side of jω axes for all values of m from 0 to 1kg. Moreover,
when m −→ ∞ , the real part of poles are still negative and
hence the filter remains stable for all values of m.

5. SIMULATION RESULTS

In this section the load cell and the adaptive compensation
filter models will be used to examine how analog adaptive
techniques can be used for load cell response correction.
Fig.9 shows the load cell output and the compensation fil-
ter output for m = 0.1kg . To illustrate the capability
in tracking changing in m, Fig.10 shows the results when
m = 1kg. Clearly the simulation results show that analog
adaptive biquad filter, shown in Fig.7, can be applied for
response correction of the second order sensors.

To indicate the necessity for using an adaptive filter, a
fixed filter is used for compensation. The filter is adjusted
for m = 0.1kg. If the sensor is stimulated with m =
0.1kg , the result is the same as Fig.9, but for m = 1kg
stimulation, the input and output of the filter is depicted in
Fig.11, which shows that the fixed filter is unable to perform
response correction when m varies.

6. CONCLUDING REMARKS

This paper has addressed response correction of the load
cell sensor using analog adaptive techniques. It has been
shown that the state-variable biquadratic filter provides ac-
curate and flexible sensor and adaptive compensation filter
models. The load cell model in addition to tracking the
variation in the mass being weighed, allows the user to vary
the other parameters including damping factor and spring
coefficient. The effectiveness of the models has been val-
idated by simulation. Further work is aimed at practical
implementation of the analog adaptive filter for load cell
response correction.
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Figure 9: Result of adaptive compensation for m = 0.1kg
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Figure 10: Result of adaptive compensation for m = 1kg
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Figure 11: Fixed filter for load cell response correction when
m varies from 0.1 to 1kg
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