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ABSTRACT

This paper studies the problem of designing digital finite 

duration impulse response (FIR) filters with prescribed flatness 

and peak error constraints using semidefinite programming 

(SDP). SDP is a powerful convex optimization method, where 

linear and convex quadratic inequality constraints can readily be 

incorporated. This property is utilized for the optimal minimax 

and least squares (LS) design of linear-phase and low-delay FIR 

filters with prescribed magnitude flatness and peak design error, 

which are formulated as a set of linear equality and convex 

quadratic inequality constraints, respectively. A method for 

structurally imposing these equality constraints in the SDP 

formulation is also proposed. Using these results, the design 

approach is further extended to the design of constrained 

complex coefficient FIR filters and variable digital filters 

(VDFs). Design examples are given to demonstrate the 

effectiveness of the approach. 

I.   INTRODUCTION

Recently, SDP has been proposed as a versatile framework 

for designing digital FIR and IIR filters [1-6].  It was found that 

many filter design problems can be cast as SDP problem.  

Another advantage of SDP which we shall utilize in this paper is 

its ability to satisfy multiple objectives expressed in terms of a 

set of linear and convex quadratic constraints. In fact, the 

pioneer works in [1,2] formulates the minimax and the least 

squares design criteria as a set of such inequalities. This 

motivates us to study the design of digital FIR filters with more 

general constraints such as magnitude flatness (such as multiple 

zeros in magnitude response) and peak design error constraints. 

Interested readers are referred to [7] for more information of 

SDP, and its application to the design of FIR and IIR filters [1-

6]. For linear-phase (LP) FIR filters, linear programming has 

been proposed [8] as a general framework for handling the 

additional linear equality and inequality constraints. Since SDP 

is an extension of linear programming, the SDP-based 

constrained FIR filter design method studied in this paper can be 

viewed as its generalization to handle convex quadratic 

objective function and constraints, which allows optimal 

minimax (and least squares) passband linear-phase FIR filters 

subject to linear equalities and convex quadratic inequalities to 

be designed. There are previous attempts in incorporating linear 

equality constraints in least squares design of FIR filters [9,10]. 

The design problem is usually formulated as a quadratic 

programming problem with linearly equality constraints 

(QPLC), generally known as the eigenfilter design method 

which can be extended to the complex FIR filter design [11,12]. 

Advantages of these approaches are their good performance and 

low design complexities. On the other hand, the SDP approach 

is capable of handling more general types of quadratic 

constraints and design criterion.  Another interesting property of 

SDP is that whenever a design problem can be formulated as 

SDP, it means that the problem is convex and the optimality of 

the solution, if there is any, is guaranteed.   

In this paper, we mainly focus on the FIR filter design 

problem with prescribed flatness and peak error constraints [13]. 

Constraints like magnitude flatness and multiple zeros are 

desirable in designing sample rate converter in order to suppress 

the alias components, and the design of wavelet basis. On the 

other hand, peak error constraints are useful to limit the sidelobe 

and undesirable peaks in filters with wide unconstrained 

transition band. Both least squares and minimax criterion will be 

considered, though SDP is particular attractive for the latter. 

The magnitude flatness constraints are derived through a simple 

relation between the derivatives of the filter response and its 

ideal counterpart. This yields a set of linear equality constraints, 

where some of the redundant variables can be expressed in 

terms of the remaining variables, and are eliminated. As a result, 

the equality constraints can be structurally imposed in the SDP 

formulation, leading to fewer numbers of variables. Within the 

SDP framework, these linear equality and convex quadratic 

inequalities constraints such as peak design error can be 

integrated together in the optimal design of real and complex 

FIR filters with minimax and LS errors satisfying these 

constraints. This offers an improved tradeoff between 

magnitude flatness, and passband and stopband ripples over 

conventional linear-phase maximally-flat filter design methods, 

say Hilbert Transformers [14], as we shall demonstrate in the 

design example section. In addition, since the FIR filters are not 

limited to linear-phase, the system delay can further be reduced. 

The new design method also offers more freedom and higher 

performance over tradition LS method in designing VDFs [15] 

with either minimax or LS design criteria, and a wide variety of 

constraints including magnitude flatness and peak design error 

constraints. Design results show that the SDP method offers an 

attractive alternative to traditional design methods because of its 

optimality, generality and flexibility.  

The paper is organized as follows: Section II is devoted to 

the SDP formulation of real and complex FIR filters, as well as 

VDFs design, based on either minimax or LS criteria. Methods 

for deriving the magnitude flatness/zero and peak design error 

constraints will be introduced in section III. Design examples 

are given in Section IV to demonstrate the effectiveness of the 

proposed approach. Finally, conclusion is drawn in Section V. 

II.   SDP FORMULATION

A. — Real-valued FIR filter design

Denote the transfer function of the FIR filter to be designed by 
1

0

)()(
N

n

nznhzH , (2-1) 

where )(nh  is the impulse response of the filter and N is the 

filter length. We want to approximate the desired response 

)(dH  by )(zH  in the minimax sense.  That is: 
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where )(W  is a positive weighting function, and ],[I

is the frequency interval of interest. The frequency response 

)( jeH  can be written as: 
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The minimization problem in (2-2) can be reformulated as: 

h
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Let )(_ dRH  and )(_ dIH  be the real and imaginary parts of 

)(dH , (2-5) can be written as: 
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Using Schur complement [2,7], the constraints in (2-6) is 

equivalent to: 
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Digitizing the frequency variable  over a dense set of 

frequencies }1,{ mii  on the frequency of interests, the 

constraints in (2-8) becomes: 

0),( ih , }1,{ mii . (2-9) 

It can be shown that (2-9) can be stacked together to form the 

following set of linear matrix inequalities (LMIs): 

0)(h , (2-10)

where )},(),....,,({)( 1 mdiag hhh . Furthermore, by 

defining the augmented variable TT
][ hx , (2-6) can be 

cast to the standard SDP problem as follows [2]: 

x
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where T]0,....0,1[c . Alternatively, the least square stopband 

attenuation can be minimized: 
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This is a quadratic programming problem: 
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To formulate (2-13) as a SDP problem, decompose Q  as 

PPQ T , one can reformulate it by means of Schur 

complement, as 
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The advantage of formulating the objective function as a set of 

LMIs is that the resulting problem is convex and the optimal 

solution, if it exists, can be found. In addition, other linear 

equalities or convex quadratic constraints can easily be 

incorporated, as we shall illustrate in later sections. 

B. — Complex-valued FIR filter design

Suppose that the impulse response of the complex FIR filter 

is given by IR jhhh , where T

RRR Nhh )]1(),...,0([h  and 

T

III Nhh )]1(),...,0([h . If we define that: 
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then (2-3) can be written as: 
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By replacing h , )(c  and )(s , as defined in (2-4), with a ,

)(1c  and )(2c , respectively, the minimization problems in 

(2-2) and (2-12) for complex FIR filters can be solved by SDP. 

C. — Real-valued variable digital filter (VDF) design

In a VDF [15], the desired response ),(dH  is a function 

of a spectral parameter  (also known as tuning or control 

parameters). The spectral characteristics of a VDF can therefore 

be continuously varied by changing . The impulse response of 

the VDF under consideration is assumed to be a linear 

combination of a polynomial basis function of the spectral 

parameter  and subfilter coefficients )(nhl , and it is given by: 
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where  is assumed to vary linearly over a finite interval. The 

z-transform of the polynomial-based VDF is then given by: 
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To simply the notation, substitute Nlnm  and jez  into 

(2-18), one gets 
1

0

),(
LN

m

njl

m

j eaeH , (2-19) 

where ),mod( Nmn  and Nnml /)( . (2-19) can be 

rewritten more compactly in matrix form as follows: 
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Again, in order to design VDF with either minimax or LS 

criteria, we replace h , )(c  and )(s with a , ),(c  and 

),(s , respectively, and digitize both  and  densely. The 

generalization to complex-valued VDF is similar.  Details are 

omitted due to page limitation. 

III.   CONSTRAINED FILTER DESIGN USING SDP 

A. — Imposing linear  equality constraints

As mentioned earlier, it is often required to impose certain 

constraints on the frequency characteristics when designing 

digital filters. One commonly encountered constraint is the 

linear equality constraints, which includes magnitude flatness at 

certain frequency points in the passband. Constraints such as a 

prescribed number of zeros at the stopband also belong to this 

category. To incorporate these constraints into SDP, the 

following relation between the derivatives of the design 

response and its ideal counterparts is employed: 
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(3-1) tells us that the filter to be designed, )(H , should 

approximate the desired response at ˆ  up to the (K-1)-th

derivatives. We now give two simple examples. 

i) Magnitude flatness constraint at the passband:

Suppose that the desired passband response is of the form 
je  for any ],[ , where DN 2/)1( is the 

group delay; and D  is the delay reduction parameter. To 

impose a magnitude flatness of order 1ˆ p
U  on )(zH  at 

pp
ˆ , the passband, we have: 
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and its matrix form is given by: 
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Uu . (3-3) 
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constraints in (3-1) can also be applied to other form of desired 

passband response, say digital differentiator.



ii) Magnitude zero constraint at the stopband:

Similarly, to impose 1ˆ s
V  zeros on )(zH  at ss

ˆ

(say in the stopband), we have 

0)(
ˆ

1

1

nj
N

n

v senhn , 1,,1,0 ˆs
Vv (3-4) 

and (3-4) becomes: 

ss V ˆˆ OhV , 1,,1,0 ˆs
Vv . (3-5) 

where 
njv

nv

s

s
en

ˆ

,ˆV  and 
s

V ˆ
O  is a 

s
V ˆ null vector.  

B. — Removing redundant variables

We now introduce a technique to impose the equality 

constraints structurally into the SDP formulation in section II-A. 

Suppose that there are R  different passband constraints with 

different degree of magnitude flatness 
rp

U
,ˆ  at prp

ˆ
,  for 

1,,1,0 Rr , and M  different stopband constraints with 

different degree of magnitude zero 
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V
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1,,1,0 Mm , then according to (3-3) and (3-5), we have: 
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These constraints can be combined to form the following matrix 

representation of the linear constraints: 
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Assume that the number of constraints is smaller than the 

number of variables, part of the variables, called the redundant 

variables, can be expressed in terms of the remaining variables, 

called the independent variables, when solving the SDP. First of 

all, rewrite (3-6) as follows: 
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of redundant variables in )(zH .  Using (3-7), h  can be written 

in terms of cNh  as: 
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where NI  is an ( NN ) identity matrix; NO  is an N  column 

zero vector. By substituting (3-8) into (2-3), cNh  can be found 

optimally by the SDP, while satisfying the prescribed 

constraints. Similarly, the above derivation can be readily 

applied to the complex FIR filter design by considering the real 

and imaginary parts of the linear equality constraints separately. 

Concerning the VDF design, linear constraints can be imposed 

on the VDF by imposing different constraints on each subfilter. 

More precisely, we have: 
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Similarly, the redundant variables can be removed as in (3-8). 

C. — Peak error and convex quadratic constraints

Apart from the linear equality constraints, linear and convex 

quadratic inequality constraints can easily be incorporated in the 

SDP formulation. As an illustration, we shall consider the 

optimal design of low-delay FIR filters with least squares 

stopband attenuation and prescribed peak ripple constraints.  Let 

p  be the peak ripple to be imposed in a frequency band 

],[ 21  (a collection of frequency bands is also feasible), 

then the peak error constraint can be written as: 
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Similar to the minimax formulation, (3-10) can be rewritten as: 
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Digitizing (3-11), the resulting constraints on the peak ripples 

can be augmented to the existing LMI in (2-11) and (2-14) for 

the minimax and LS criterion respectively. Peak error 

constraints for complex FIR filters and VDFs can be derived 

similarly, using the definitions in (2-15) and (2-21) respectively. 

IV.   DESIGN EXAMPLES

Example 1: Low-delay Hilbert Transformers (HTs)

In this example, low-delay HTs with prescribed magnitude 

flatness are designed. Due to space limitation, only the minimax 

design of real-valued odd-length HTs will be given. The desired 

frequency response of the HT [8,14] is given by: 

21)( pp

jHT

d jeH , (4-1) 

where 1p  and 2p  are the passband cutoff frequencies and 

DN 2/)1(  is the group delay. It should be noted that 

when the reduction parameter D  is equal to zero, the proposed 

HTs with odd- and even-lengths correspond to the traditional 

type-3 and type-4 linear-phase HTs respectively. As an 

illustration, D   is set to 2 in this example. Substituting (4-1) 

into (3-2), a set of magnitude flatness constraints for HTs can be 

readily derived. The filter length N  for the odd-length HTs, is 

21 and the passband is from 2.0  to 8.0 . Figure 1 shows the 

frequency and group delay responses of the odd-length HTs 

with 05.0U and 3. It can be seen that the passband ripples are 

smaller for the designs with lower order of magnitude flatness, 

which is to be expected. Moreover, unlike the linear-phase HTs, 

the proposed low-delay HTs do not necessarily have a zero 

magnitude at and0 . As a comparison, the conventional 

type-3 maximally-flat linear-phase HT (MF-LP-HT) [14] is also 

designed and plotted as dotted line in figure 1. The filter length 

of the type-3 MF-LP-HT is chosen to be 17 so that it has the 

same group delay as the proposed low-delay HTs. It is noticed 

that the passband errors of the type-3 MF-LP-HT increase as the 

frequencies go further away from 2/ . For the current 

design, the passband error of the type-3 MF-LP-HT at 

2.0  or 8.0  is 0.6728dB, which are significantly larger 

than the worst-case passband errors (0.006285dB) of the 

proposed design with second order magnitude flatness. In order 

to decrease the errors at the required passband cutoff 

frequencies, the length and hence the system delay of the type-3 

MF-LP-HT has to be increased significantly. This suggests that 

the prescribed flatness approach offers more flexibility and 

design freedom in satisfying different passband and stopband 

requirements than the conventional method.  

Example 2: Low-delay complex single passband filters 

In this example, low-delay complex single passband filters of 

length 31N  with magnitude flatness and zero are designed. 

The constraint parameters, as discussed in Section III-A, are 

30U  and 3V . Both minimax and least-squares stopband 

criteria, with equal passband and stopband weights, are 

considered. The specifications of the filters are:  
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The frequency and group delay responses of the filters so 

obtained are plotted in figure 2. The worst-case stopband 

attenuation at ],4.0[ is 23.77dB for the LS design, as 

compared to 30.25dB for the minimax design. To further 

illustrate the flexibility of the SDP method, peak error 

constraints, which are convex quadratic inequality constraints, 

are imposed to limit the sidelobe at ]6.0,4.0[  to 29dB in 

exchange for slightly lower performance at the unconstrained 

frequency bands. From figure 2 and the pole-zero plot (not 

shown here due to page limitation), it is noticed that both 

equality and inequality constraints are satisfied. 

Example 3: Low-delay tunable lowpass filter (VDF)

In this example, low-delay FIR lowpass filter with variable 

cutoff frequency is designed using the proposed SDP 

formulation. The transition bandwidth is fixed at 2.0  and the 

passband edge is varied from 2.0  to 4.0 . The FIR VDF has a 

subfilter length of 30, an interpolation order of 5 using the 

polynomial basis function, and a constant group delay of 12.5 in 

the passband. First order magnitude flatness at 0  and first 

order magnitude zero at  are enforced in our VDF design: 

i.e. 20U  and 2V . Figure 3a shows the frequency response 

with evenly sampled tuning parameters ]1,0[  and figure 3b 

shows the group delay response of the lowpass FIR VDF so 

obtained using minimax criterion. The corresponding passband 

deviation and stopband attenuation are respectively 0.0398dB 

and 46.678dB. Alternatively, we can solve the above problem in 

LS sense. However, the design results using LS criterion with 

flatness and/or peak error constraints are omitted due to page 

limitation. It should be noted that such constrained design 

problem has not been studied in conventional design methods of 

VDFs. Also the VDFs considered in [15] are based on the LS 

criterion without any additional constraints. 

V.   CONCLUSION

An SDP approach for designing real and complex FIR 

filters and VDF with prescribed flatness and peak error 

constraints has been presented. These constraints can be easily 

incorporated in the SDP formulation to obtain optimal passband 

linear-phase FIR filters with minimax or LS design criteria.  In 

addition, a technique for structurally imposing the equality 

constraints in the SDP is proposed. Design examples are given 

to illustrate the effectiveness of the proposed approach. It shows 

that the SDP method is an attractive alternative to traditional 

design methods in tackling a wide range of filter design 

problems, because of its optimality, generality and flexibility. 
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1a) 1b) 

Figure 1: Design results of low-delay odd-length HTs in example 1 (Design 

Criterion: Minimax): a) Frequency response (Passband details in smaller figure). 

b) Group delay response. (MF-LP-HT: Maximally-flat Linear-phase Hilbert 

transformer). 

2a) 2b) 

2c) 2d) 

Figure 2. Design results of low-delay complex single passband filters in example 

2 (Linear equality constraint: 30U  and 3V ): a) Frequency response. b) 

Passband details c) Stopband details at ]6.0,4.0[ . d) Group delay response. 

(PEC: -29dB Peak Error Constraint at ]6.0,4.0[ ). 

3a) 3b) 

Figure 3: Design results of low-delay VDF in example 3 (Linear equality 

constraint: 20U and 2V . Design Criterion: Minimax): a) Frequency 

response with  evenly sampled in the range ]1,0[ . b) Group delay response. 
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