
JOINT OPTIMIZATION OF ERROR FEEDBACK AND

COORDINATE TRANSFORMATION FOR ROUNDOFF

NOISE MINIMIZATION IN STATE-SPACE DIGITAL FILTERS

Takao Hinamoto, Hiroaki Ohnishi and Wu-Sheng Lu†

Graduate School of Engineering, Hiroshima University, Japan
hinamoto@hiroshima-u.ac.jp

†Dept. Elect. Comput. Eng., University of Victoria, Canada
wslu@ece.uvic.ca

ABSTRACT
An iterative approach for joint optimization of a scalar
error-feedback matrix and a coordinate transformation
matrix is developed to minimize the roundoff noise sub-
ject to the l2-norm dynamic-range scaling constraints.
When the iterative algorithm converges and the optimal
coordinate transformation matrix is obtained, the diag-
onal error-feedback matrix is derived to minimize the
noise gain in the optimal state-space realization. This
diagonal error-feedback matrix enables one to produce
more reduction of the noise gain. Finally, a numerical
example is given to illustrate the utility of the proposed
technique.

1. INTRODUCTION

As is well known, error feedback is an effective tech-
nique for the reduction of the roundoff noise due to
signal quantizations [1]-[4]. Alternatively, the prob-
lem of synthesizing state-space digital filter structures
which minimize roundoff noise under l2-norm scaling
constraints has been investigated [5],[6]. Moreover, it
has been shown that the output quantization noise can
be reduced more effectively by choosing the filter struc-
ture and applying the concept of error feedback [7]-[9].

This paper investigates the problem of minimiz-
ing roundoff noise under l2-norm dynamic-range scal-
ing constraints in state-space digital filters by means
of joint optimization of error feedback and coordinate
transformation. An iterative procedure is proposed for
the joint optimization. When the iterative algorithm
converges, the optimal coordinate transformation ma-
trix is obtained, which is used to construct the opti-
mal state-space realization. Then, the diagonal error-
feedback matrix is derived to minimize the noise gain in
the optimal realization. Our simulation results demon-
strate the validity of the proposed technique.

2. ERROR FEEDBACK IN STATE-SPACE
DIGITAL FILTERS

Consider a stable state-space digital filter (A, b, c, d)n
described by

x(k + 1) = Ax(k) + bu(k)

y(k) = cx(k) + du(k)
(1)

where x(k) is an n × 1 state-variable vector, u(k) is a
scalar input, y(k) is a scalar output, and A, b, c and d
are real constant matrices of appropriate dimensions.
The filter (1) is assumed controllable and observable.

Taking into account the quantizations performed
before matrix-vector multiplication, one can express an
finite-word-length (FWL) implementation of (1) with
error feedback as

x̃(k + 1) = AQ[x̃(k)] + bu(k) +De(k)

ỹ(k) = cQ[x̃(k)] + du(k)
(2)

where e(k) = x̃(k) − Q[x̃(k)] and D is referred to as
an error-feedback matrix of dimension n × n.

All coefficient matrices A, b, c, and d are assumed
to have an exact fractional Bc bit representation. The
FWL state-variable vector x̃(k) and the output ỹ(k)
all have a B bit fractional representation, while the
input u(k) is a (B − Bc) bit fraction. The quantizer
Q[·] in (2) rounds the B bit fraction x̃(k) to (B − Bc)
bits after completing the multiplications and additions,
where the sign bit is not counted. It is assumed that
the roundoff error e(k) can be modeled as a zero-mean
noise process with covariance σ2In. Subtracting (2)
from (1) yields

∆x(k + 1) = A∆x(k) + (A − D)e(k)

∆y(k) = c∆x(k) + ce(k)
(3)
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where

∆x(k) = x(k)− x̃(k), ∆y(k) = y(k)− ỹ(k).

Taking the z-transform on both sides of (3) and setting
∆x(0) = 0 gives

∆Y (z) = GD(z)E(z)

GD(z) = c(zIn − A)−1(A − D) + c
(4)

where ∆Y (z) and E(z) represent the z-transforms of
∆y(k) and e(k), respectively.

The normalized noise gain I(D) = σ2
out/σ2 is then

defined by
I(D) = tr[W D] (5)

where

W D =
1
2πj

∮
|z|=1

G∗
D(z)GD(z)

dz

z
.

By utilizing the Cauchy integral theorem, matrix W D

defined in (5) can be expressed in closed form as

W D = (A − D)T W o(A − D) + cT c (6)

where W o is the observability Gramian of the filter
that can be obtained by solving the Lyapunov equation

W o = AT W oA + cT c. (7)

Alternatively, the controllability Gramian Kc can be
obtained by solving the Lyapunov equation

Kc = AKcA
T + bbT . (8)

The filter (1) is changed via coordinate transformation
x(k) = T −1x(k) to a new realization (A, b, c, d)n with

A = T −1AT , b = T −1b, c = c T

W o = T T W oT , Kc = T −1KcT
−T . (9)

The problem considered here is to jointly optimize
a scalar error-feedback matrix αIn and a coordinate
transformation matrix T for roundoff noise minimiza-
tion under l2-norm dynamic-range scaling constraints:

(Kc)ii = (T −1KcT
−T )ii = 1, i = 1, 2, · · · , n. (10)

If the unit noise matrix W D, (6), with D = αIn is
denoted by W α, then the noise gain I(D) defined in
(5) is written as tr[T T W αT ] under joint optimization
of scalar error-feedback and coordinate transformation.

The proposed joint optimization will be carried out
in an iterative manner.

3. AN ITERATIVE PROCEDURE FOR
JOINT OPTIMIZATION

In order to minimize tr[T T W αT ] (with α fixed) over
an n × n nonsingular matrix T subject to the con-
straints shown in (10), we define the Lagrange function

J(α,P , λ) = tr[W αP ] + λ(tr[KcP
−1]− n) (11)

where P = T T T and λ is a Lagrange multiplier. We
compute

∂J(α,P , λ)
∂α

= 2(α tr[W oP ]− tr[W oAP ])

∂J(α,P , λ)
∂P

= W α − λP −1KcP
−1

∂J(α,P , λ)
∂λ

= tr[KcP
−1]− n.

(12)

Letting ∂J(α,P , λ)/∂α = 0 yields

α =
tr[W oAP ]
tr[W oP ]

. (13)

Letting ∂J(α,P , λ)/∂P = 0 and ∂J(α,P , λ)/∂λ = 0,

P W αP = λKc, tr[KcP
−1] = n. (14)

It follows from (14) that

P =
√

λW
− 1

2
α [W

1
2
αKcW

1
2
α ]

1
2 W

− 1
2

α

1√
λ
tr[KcW α]

1
2 =

1√
λ

(
n∑

i=1

θi

)
= n

(15)

where θ2
i for i = 1, 2, · · · , n are the eigenvalues of

KcW α. This can be used to obtain

P =
1
n

(
n∑

i=1

θi

)
W

− 1
2

α [W
1
2
αKcW

1
2
α ]

1
2 W

− 1
2

α . (16)

Substituting (16) into (11) yields the minimum value
of J(α,P , λ) for a given scalar α as

min
P , λ

J(α,P , λ) =
1
n

(
n∑

i=1

θi

)2

. (17)

This completes the first round of iteration and this pro-
cess may continue until both P and α converge. Having
obtained an n × n symmetric positive-definite matrix
P , an improved value of scalar α can be obtained using
(13).

This iterative procedure for minimizing (11) with
respect to a scalar parameter α as well as matrix P
can be summarized as follows:
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1) Set i = 1 and

P (0) = diag{(Kc)−1
11 , (Kc)−1

22 , · · · , (Kc)−1
nn}.

2) Compute a scalar α(i) using

α(i) =
tr[W oAP (i − 1)]
tr[W oP (i − 1)]

.

3) Compute

Imin(α(i)In) = (1− α(i)2) tr[W oP (i − 1)].

4) Replace W α by W α(i) computed using

W α(i) = (1+α(i)2)W o −α(i)(AT W o +W oA).

5) Derive matrix P from (17), and take the result-
ing P as P (i).

6) Compute tr[W α(i)P (i)].

7) Update i to i+ 1.

8) Repeat from Step 2) until the change in either
Imin[α(i)In] or tr[W α(i)P (i)] becomes negligi-
ble.

Next, the coordinate transformation matrix T will
be constructed so that (10) is satisfied. From (16),
the optimal coordinate transformation matrix T that
minimizes (11) can be obtained in closed form as

T =
1√
n

(
n∑

i=1

θi

) 1
2

W
− 1

2
α [W

1
2
αKcW

1
2
α ]

1
4 U (18)

where U is an arbitrary n×n orthogonal matrix. From
(18) it follows that

Kc = T −1KcT
−T

= n

(
n∑

i=1

θi

)−1

U T [W
1
2
αKcW

1
2
α ]

1
2 U .

(19)

Let us choose the n×n orthogonal matrix U such that
the matrix Kc in (9) satisfies the l2-norm dynamic-
range scaling constraints, (10), on the state-variables.
To this end, we perform the eigenvalue-eigenvector de-
composition

[W
1
2
αKcW

1
2
α ]

1
2 = RΘRT (20)

where Θ = diag{θ1, θ2, · · · , θn} and RRT = In. This
yields

n

(
n∑

i=1

θi

)−1

[W
1
2
αKcW

1
2
α ]

1
2 = RΛ−2RT (21)

where Λ = diag{λ1, λ2, · · · , λn} and for i = 1, 2, · · · , n,
λi = ((θ1 + θ2 + · · ·+ θn)/nθi)

1
2 . Now an n×n orthog-

onal matrix S such that

SΛ−2ST =




1 ∗ · · · ∗
∗ 1

. . .
...

...
. . . . . . ∗

∗ · · · ∗ 1


 (22)

can be obtained by numerical manipulations [6, p.278].
By choosing U = RST in (18), the optimal coordi-
nate transformation matrix T both satisfying (10) and
minimizing (11) can now be constructed as

T =
1√
n

(
n∑

i=1

θi

) 1
2

W
− 1

2
α [W

1
2
αKcW

1
2
α ]

1
4 RST . (23)

Suppose the iterative algorithm converges after
N iterations and the optimal coordinate transforma-
tion matrix T (N) has been computed from (20)-
(23). Then, the diagonal error-feedback matrix D =
diag{α1, α2, · · · , αn} that minimizes

I(D) = tr[T T (N)W oT (N)] + tr[T T (N)W oT (N)D2]

−2tr[T T (N)AT W oT (N)D]
(24)

is given by

αi =
(T T (N)W oAT (N))ii
(T T (N)W oT (N))ii

, i = 1, 2, · · · , n. (25)

This diagonal error-feedback matrix D makes it possi-
ble to produce more reduction of the noise gain, i.e.,

Imin(D) < Imin[α(N)In]. (26)

4. A NUMERICAL EXAMPLE

Let a state-space digital filter (A, b, c, d)3 be described
in a controllable canonical form as

A =


 0 1 0

0 0 1
0.339377 −1.152652 1.520167




b =
[
0 0 0.437881

]T

c =
[
0.212964 0.293733 0.718718

]
d = 6.59592× 10−2

which satisfies l2-norm dynamic-range scaling con-
straints, and yields I(0) = tr[W o] = 11.133150.
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We apply the iterative optimization procedure in
Section 3 to this filter. The convergent profile of first
10 iterations is given in Table I, from which we see
that the algorithm converges after six iterations to a
scalar α = 0.647686 and Imin(αIn) = tr[T T W αT ] =
1.450048. In this case, the coordinate transformation
matrix T o is given by

T o =


 −1.973853 −0.153371 −2.328357

−0.063334 −1.398294 −1.260527
1.402772 −0.676604 −0.969851


 .

TABLE I
CONVERGENT PROFILE
OF FIRST 10 ITERATIONS

i α(i) Imin[α(i)In] tr[W α(i)P (i)]
1 0.764400 4.627965 1.482085
2 0.655454 1.451873 1.450188
3 0.648286 1.450059 1.450049
4 0.647733 1.450048 1.450048
5 0.647689 1.450048 1.450048
6 0.647686 1.450048 1.450048
7 0.647686 1.450048 1.450048
8 0.647686 1.450048 1.450048
9 0.647686 1.450048 1.450048
10 0.647686 1.450048 1.450048

If α = 0.647686 is rounded to power-of-two rep-
resentation with 3 bits after binary point, then the
noise gain is founded to be I(αIn) = 1.451335 where
α = 0.625.

Next, a refined solution which offers further reduced
noise gain is deduced by applying an optimal diagonal
error-feedback matrix to the optimized realization, i.e.,
(T o−1AT o,T o−1b, cT o, d)3. The optimal diagonal
error-feedback matrix obtained using (25) is given by

D = diag{0.705402, 0.510713, 0.683277}
which yields Imin(D) = 1.433755.

The above diagonal error-feedback matrix after 3-
bit quantization (power-of-two representation with 3
bits after binary point) gives Imin(D) = 1.438801,
which is less than Imin(D) = 1.450049 in the optimal
scalar error-feedback.

To compare the proposed method with those report-
ed in [6]-[8], we choose D = 0, i.e., W D = W o as in
[6] or D = In as in [7],[8], and minimize tr[T T W DT ]
with respect to matrix T under the constraints of (10):

min
T

tr[ T T W oT ] = 2.355360

min
T

tr[ T T W DT ] = 1.752546

which are considerably larger than our results described
above.

5. CONCLUSION

The roundoff noise minimization in state-space digital
filters has been considered. The noise minimization
problem has been addressed in scenario where a scalar
error-feedback matrix and a coordinate transformation
matrix are jointly optimized subject to usual l2-norm
dynamic-range scaling constraints. Simulation results
have been presented to illustrate and support our the-
oretical analysis and proposed algorithm.

The extension of the results obtained in this paper
to multidimensional case will appear elsewhere.
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