Inertial and vision head tracker sensor fusion using a particle filter for augmented reality systems | IEEE Conference Publication | IEEE Xplore

Inertial and vision head tracker sensor fusion using a particle filter for augmented reality systems


Abstract:

A basic problem with augmented reality systems using head-mounted displays (HMDs) is the perceived latency or lag. This delay corresponds to the elapsed time between the ...Show More

Abstract:

A basic problem with augmented reality systems using head-mounted displays (HMDs) is the perceived latency or lag. This delay corresponds to the elapsed time between the moment when the user's head moves and the moment of displaying the corresponding virtual objects in the HMD. One way to eliminate or reduce the effects of system delays is to predict the future head locations. Actually, the most used filter to predict head motion is the extended Kalman filter (EKF). However, when dealing with nonlinear models (like head motion) in state equation and measurement relation and a non Gaussian noise assumption, the EKF method may lead to a non optimal solution. In this paper, we propose to use sequential Monte Carlo methods, also known as particle filters to predict head motion. These methods provide general solutions to many problems with any nonlinearities or distributions. Our purpose is to compare, both in simulation and in real task, the results obtained by particle filter with those given by EKF.
Date of Conference: 23-26 May 2004
Date Added to IEEE Xplore: 03 September 2004
Print ISBN:0-7803-8251-X
Conference Location: Vancouver, BC, Canada

Contact IEEE to Subscribe

References

References is not available for this document.