

University of Westminster Eprints
http://eprints.wmin.ac.uk

Synthesis of reconfigurable multiplier blocks: part I:
fundamentals.

Suleyman Demirsoy1
Izzet Kale1
Andrew Dempster2

1Cavendish School of Computer Science, University of Westminster

2School of Surveying and Spatial Information Systems, University of New
South Wales, Sydney, Australia

Copyright © [2005] IEEE. Reprinted IEEE International Symposium on Circuits and
Systems 2005, pp. 536-539.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

Synthesis of Reconfigurable Multiplier Blocks: Part I-
Fundamentals

Süleyman Sırrı Demirsoy, Izzet Kale
Applied DSP and VLSI Research Group

University of Westminster
London, W1W 6UW, UK

{demirss, kalei}@wmin.ac.uk

Andrew G. Dempster
School of Surveying and Spatial Information Systems

University of New South Wales
Sydney, Australia

a.dempster@unsw.edu.au

Abstract— Reconfigurable Multiplier Blocks (ReMB) offer
significant area, delay and possibly power reduction in time-
multiplexed implementation of multiple constant
multiplications. This paper and its companion paper (subtitled
Part II- Algorithm) together present a systematic synthesis
method for Single Input Single Output (SISO) and Single
Input Multiple Output (SIMO) ReMB designs. This paper
presents the necessary foundation and terminology needed for
developing a systematic synthesis technique. The companion
paper illustrates the synthesis method through examples. The
method proposed achieves reduced logic-depth and area over
standard multipliers / multiplier blocks.

I. INTRODUCTION
Primitive Operator Filters [1] and multiplier blocks [2]

are especially beneficial for the fully parallel implementation
of digital filters and filter banks. They reduce the
complexity of the implementation effectively, by exploiting
the redundancy of the multiple constant multiplications.
Multiplications by coefficients are realized by successive
shift and add operations. The intermediate values that are
formed during the generation of one coefficient are re-used
for other coefficients, and thus reducing the computational
redundancy. This topic has been studied extensively in the
literature, and many algorithms were developed to design
multiplier blocks or - in other words - multiple constant
multiplications for different applications. These algorithms
can be grouped into two, depending on their approach to the
problem:

• Sub-expression sharing method; that works on the
Signed Digit (SD) representations of a group of
coefficients [3]-[7],

• Numerical (graphical) approach; where a group of
coefficient products are generated using common
intermediate products [1],[2],[8]-[11].

The savings that can be achieved in implementing fully
parallel digital filters as a result of these techniques are
impressive both in terms of area, complexity and power
reduction [1]-[11].

In recent years, the application of the multiplier blocks to
time-multiplexed digital filter designs was studied in [12]-
[14]. The coefficient store and the general-purpose
multiplier in Fig. 1(a) were replaced by a reconfigurable
multiplier block (b), which can generate the required
coefficient products with its different configurations. For the
example in Fig. 1(b) the ReMB is a Single Input Single
Output (SISO) block. A Single Input Multiple Output
(SIMO) ReMB can replace the entire fixed multipliers in a
bank of filters as shown in Fig 1(c).

It has been shown that the redundancy can be reduced
and the resulting specialized multiplier design can be much
more efficient in terms of area and computational complexity
compared to the general-purpose multiplier with its
associated coefficient store [12]-[14]. Guidelines for
efficient realization were presented in [12], and an efficient,
automated design algorithm based on the graphical approach
was developed and reported in [13]. This algorithm was
suitable for SIMO systems such as filter banks.

Figure 1 (a) Time-multiplexed Tappled Delay Line (TDL) (direct-form)
FIR filter, (b) Conceptual SISO ReMB that would replace the coefficient
store and the general purpose multiplier. (c) A SIMO ReMB system can

replace the dashed box in a transpose direct form filter bank.

][nx 1c 2c 1−kc kc

][1 nw][2 nw][1 nwk−][nwk

select

wi[n]

Multiplier block][nx 1c 2c 1−kc kc

][1 nw][2 nw][1 nwk−][nwk

select

wi[n]

Multiplier block

Coefficient
Store ci

y[n]

x[n]

wi[n]

Input
Memory

Coefficient
Store ci

y[n]

x[n]

wi[n]

Input
Memory

(a)

(b)

jc1
jc2

j
kc 1−

j
kc

2
1c 2

2c 2
1−kc 2

kc

][nx

][nyi

1
1c 1

2c 1
1−kc 1

kc
(c)

5360-7803-8834-8/05/$20.00 ©2005 IEEE.

Efficient use of the resources on FPGA structures was
studied in [15]. In this study, Turner reported significant
savings in the area and delay of some DSP blocks by using
the Reduced Coefficient Multiplier (RCM) that uses the
configurable resources of a Field Programmable Gate Array
(FPGA). His design method [16], which is based on
common sub-expression sharing, combines the SD-encoded
coefficients on to the Look-Up Tables (LUT) that exist in
FPGAs and can be used for SISO and Multiple Input Single
Output (MISO) blocks.

In this paper, we will present the fundamentals required
and developed in [13] for a systematic synthesis of SISO and
SIMO ReMB. Section 2 will focus on the basic structure
topology. Section 3 will give the details of the developed
foundation for SIMO and low logic-depth, with conclusions
in Section 4.

II. BASIC STRUCTURE TOPOLOGY
All the examples in the paper are based on the simplest

basic structure topology as shown in Fig. 2(a). In general, all
ReMB designs are presented as directed-acyclic graphs
where each line represents a connection. The (•) represents
an adder or a subtractor or an adder/subtractor. One of its
inputs is connected to a multiplexer. This basic structure can
be configured to operate either on the (A, B) or (A, C) inputs
by the help of the select line of the adder resulting in two
configuration stages. Some of the possible variants of this
topology are (A+B, A+C), (A+B, A-C), (A-B, A-C). These
sets of operations are particularly important since they can be
efficiently implemented in the Virtex FPGA, with no extra
hardware cost for multiplexers [16].

Although the algorithm is structured to employ variants
of this basic structure, the idea of how to design ReMB for a
given coefficient set is applicable to any basic structure (See
[12], [13] for other forms of basic structures and much
detailed information on ReMB).

Fig. 2(b) shows two interconnected basic structure. The
output produced by the first basic structure is fed to the input
of the second one. The total number of outputs that can be
produced by this structure is four. When three of the basic
structures are interconnected as shown in Fig. 2(c) and (d)
the number of coefficients that can be produced at the output
(rightmost node) is eight.

(a) (b)

 (c) (d)

Figure 2 (a) Topology of the simplest basic structure, (b) An example for
a cascade of two basic structures. Three basic structures interconnected in

the (c) chain form, (d) tree form.

III. FOUNDATION FOR SYNTHESIS

A. Efficient Handling of Multiple Outputs
The multiplier block algorithm RAG-n presented in [2],

built the coefficients in a given set one by one in an order
generally defined by their costs (minimum number of
interconnected adders to generate the coefficient) or
magnitudes. The coefficients having the same costs still
needed to be built in order, by making use of all the
previously generated numbers (both the fundamentals and
the coefficients) in the multiplier block. The multiple-output
requirement of the multiplier block to be used in the
transposed direct form filters (the multiplier block in Fig.
1(b) without the multiplexer) was realized by connecting the
generated partial products or coefficients to the
corresponding filter taps.

The efficient realization of multiple outputs in a ReMB
design has to be different than multiplier blocks. Let us
consider a typical time-multiplexed filter bank application as
shown in Fig. 1(c), with output nodes y1, y2, … yk. Typically
each output node of the ReMB has the same set size, i.e. the
number of coefficients per output node is the same, which
we shall assume to be M. The upper bound of the output set
size of a ReMB design grows exponentially as the number of
cascaded basic structures increases [13]. We further assume
that an output node y1 is built using several interconnected
basic structures shown in Fig. 2(a) and have M different
outputs. Any other output node, say y2, built with the same
type of basic structure cascaded to y1 would typically have
the capacity of 2M outputs. Since y1 and y2 both have the
same output set size, the basic structure of y2 becomes under-
utilized.

One way to make sure that the output nodes are treated
independently is to start designing from the output nodes and
build the whole design step by step back to the input, as each
output node would be a different starting point without any
dependence on one another.

B. Basic Structure Depth
To avoid under-utilization, all output nodes in the design

should have a similar number of interconnected basic
structures when traced back to the input. The number of
coefficients per output node would put a restriction on both
the minimum number of basic structures required and the
minimum depth of the ReMB design. For example, it was
shown in previous section that, by using the simplest basic
structure, a maximum of eight different numbers can be
generated at depth 2. In the same way, the maximum
number of outputs that can be achieved at a depth of three
basic structures is 128 for a possible ReMB design shown in
Fig. 3. The basic structures in the diagram are placed in
layers to indicate the “basic-structure-depth” of that node.

The maximum number of outputs from a node is in2
where i is the basic-structure-depth and in can be formulated
recursively for ReMB designs comprising the simplest basic
structure as follows:

A
B
C

537

Figure 3 A ReMB design with a basic-structure-depth of three, which can
produce 128 different coefficients at the output of layer 3.

 12 1 += −ii nn (1)

It should be noted that, for a different basic structure, the
maximum number of outputs per node would be different.

On the other hand, the individual coefficient costs put a
separate restriction to the number of basic-structures
interconnected for building a particular output node. For
example a cost-3 coefficient needs at least three basic
structures to be generated. They can either be in a chain
form (Fig. 2c) or in a tree form (Fig. 2d). However it is
shown that, the tree form interconnection of n
adders/subtractors cannot produce all cost-n numbers in a
multiplier block [10]. Therefore, a basic-structure-depth of n
would ensure that a cost-n coefficient can be generated.

The basic-structure-depth is important when deciding the
layer of an output node. To explain this, consider a node
with the fundamental set {39, 45, 41, 47, 61, 11, 27, 57,
119}. All of the fundamentals are cost-2, i.e. each of them
requires a cascade of two adders to be generated. However,
since there are nine different numbers, the basic-structure-
depth of the node would be at least three if the basic
structures shown in Fig. 2(a) were to be employed, since the
maximum number of outputs at depth-2 is eight. Here, the
basic-structure-depth is dictated by the output set size. In a
different example, the coefficient set {473, 181, 49} has
three different numbers. The coefficient ‘49’ is a cost-2
number whereas 473 and 181 are both cost-3. Again,
assuming the simplest basic-structure is used, the output set
size only requires a minimum of two interconnected basic
structures. This time, the basic-structure-depth is dictated
not by the output set size but by the cost of the coefficients,
which is three. However, it should be kept in mind that,
some cost-3 coefficients can be generated at depth-2.
Choosing depth-3 guarantees to cover all the different
topologies that generate cost-3 coefficients.

The basic-structure-depth can not always suggest the
accurate layer of the output node by checking the coefficient
set. For example, the set {9, 15} includes two cost-1
numbers. The coefficient ‘9’ can be realized as (8+1),
whereas ‘15’ is generated as (16-1). For an FPGA

implementation with a restricted set of basic structures as
explained in Section 2, (8+1) and (16-1) cannot be combined
on a basic structure. Therefore, the set {9, 15} needs to be
designed in layer two.

As a summary, the lower bound to the basic-structure-
depth of an output node is the maximum of two values. The
first one is the minimum depth that can generate the required
output set size. This value depends on the type of the basic
structure employed in the design. The second one is the
maximum of the adder-costs of the coefficients.

C. Graphs
The realization of any coefficient from a set of

fundamentals can be represented on a graph as shown in Fig.
4. For a coefficient x, the ‘graph’ consists of a set of
numbers {a, b, c, d} satisfying the equation:

 x= ac ± bd (2)

where c and d are in the form of ±2r, r being a natural
number for integer x.

Figure 4 An example graph

Equation (2) results in more than one graph for a coefficient
x when {a, b, c, d} change in a pre-defined interval.
Collecting all such graphs of a coefficient in a table, graph-
tables are formed. Graph-tables can be employed in
generating efficient ReMB designs.

D. Node-definition
A node-definition is a combination of graphs using a

particular basic structure to produce a given coefficient set.
Fig. 5 shows a node-definition for the coefficient set {K, L,
M} on a basic structure. A, B1 and B2 are the inputs of the
basic structure. c, d1, and d2 are the edge values. [t0 t1 t2] are
the different configuration states of the resulting ReMB
design. [aK, aL, aM], [b1K, X, b1M] and [X, b2L, X] are the
fundamental vectors holding the inputs of the basic structure
for different configurations. The ‘X’ (don’t care) in [b1K, X,
b1M] means the multiplexer does not use B1 for configuration
t1 but rather uses b2L from B2 to produce the coefficient L.
At configuration t0, this node generates K as K= aK×c +
b1K×d1.

c

d1

d2X]b2L[X

b1M]X[b1K

aM]aL[aK

t2]t1[t0

X]b2L[X

b1M]X[b1K

aM]aL[aK

t2]t1[t0

M]L[K
t2]t1[t0
M]L[K
t2]t1[t0

A

B1

B2
Figure 5 A generalized node-definition includes all the details about the
node; edge values, and the fundamentals required to build the coefficient

set for a given basic structure.

Layer 1 Layer 2 Layer 3

a

b

c

d x

538

The graphs of the coefficients should be combined in
such a way that, the basic-structure-depth of the resulting
fundamental sets at A, B1 and B2, should be kept less than
the basic-structure-depth of the coefficient set, otherwise the
design would not converge back to the graph input. This
implies that two parameters have to be decreased while
choosing the graphs; the number of different fundamentals
(fundamental set size) at an input, and the cost of the
fundamentals. Assuming the basic-structure-depth of the
coefficient set is three, the fundamentals at the input sets
should be at most cost-2, and the fundamental set sizes can
be at most eight (i.e. the maximum number of outputs
allowed at that particular depth, see (1)).

The node-definitions satisfying the two requirements
mentioned above could be found by processing the
combinations of graphs that exist in the graph-tables. This
method is explained further in the companion paper [17].

E. Algorithm Approach
Fig. 6 shows a typical symbolic SIMO ReMB example

that can be generated by the algorithm. There are three
output nodes, y1, y2, and y3. As observed from the figure, all
output nodes have a basic-structure-depth of three.

Figure 6 A symbolic diagram for SIMO ReMB

The layers partition the design into smaller units that can
systematically be handled by the algorithm. Each layer has
output nodes and fundamental sets that feed the basic
structures. For an intermediate layer, the fundamental sets
are the output nodes generated in the preceding layers. For
layer 1, the fundamental set is always the input signal, which
is represented as ‘1’. Starting from the last layer of the
design, the algorithm recursively calls itself for each layer
until it reaches the input signal. At each call, a number of
coefficient sets or output nodes are processed by the
algorithm to create node-definitions that generate the
required coefficient sets. The fundamental sets that are
required by these node-definitions are then designed by
recursive calls of the algorithm.

IV. CONCLUSION
As a new design technique, ReMB needs new concepts to

be developed for its efficient application. This paper
presented new concepts to synthesize SISO and SIMO
ReMB circuits. They form the foundation for the algorithm
that is presented in the companion paper entitled as “Part II:
Algorithm” [17].

The proposed technique divides the whole ReMB design
into layers depending on the basic-structure-depth and deals
with each layer recursively, starting from the output towards
the input.

REFERENCES
[1] Bull D.R. and D.H Horrocks, “Primitive operator digital filters”, IEE

Proceedings-G, vol. 138, no. 3, pp. 401-412, June 1991.
[2] Dempster A.G. and Macleod M.D., “Use of minimum-adder

multiplier-blocks in FIR digital filters”, IEEE Trans. CAS-II, vol. 42,
no. 9, pp. 569-577, November 1995.

[3] Bernstein R., “Multiplication by integer constants”, Software-Practice
and Experience, vol. 16, no. 7, pp. 641-652, Academic Press, New
York, July 1986.

[4] Hartley R., “Subexpression sharing in filters using canonic signed
digit multipliers”, IEEE CAS-II, vol. 43, no.10, pp. 677-688, 1996

[5] Pasko R., et al, “A new algorithm for elimination of common sub-
expressions”, IEEE Trans. CAD ICS, vol. 18, pp.58-68, January
1999.

[6] Martinez-Peiro M., E.I. Boemo and L. Wanhammar, “Design of high-
speed multiplierless filters using a nonrecursive signed common
subexpression algorithm”, IEEE Trans. CAS-II, vol. 49, no. 3, pp.
196-203, March 2002.

[7] Potkonjak M., M.B. Srivastava and A. P. Chandrakasan, “Multiple
constant multiplications: Efficient and versatile framework and
algorithms for exploring common subexpression elimination”, IEEE
Trans. on CAD of ICS, vol. 15, no. 2, pp. 151-165, February 1996.

[8] Li D., “Minimum number of adders for implementing a multiplier and
its application to the design of multiplierless digital filters”, IEEE
Trans. CAS-II, vol. 42, no. 7, pp. 453-460, July 1995.

[9] Dempster A. G. and M.D. Macleod, “General algorithms for reduced-
adder integer multiplier design”, Elec. Letters, vol. 31, no. 21, pp.
1800-1802, October 1995.

[10] Gustafsson O., A. Dempster and L. Wanhammar, “Extended results
for minimum-adder constant integer multipliers”, IEEE ISCAS’2002,
vol. 1, pp. 73-76, May 2002.

[11] Kang H.J. and I.C. Park, “Multiplier-less IIR filter Synthesis
algorithms to trade-off the delay and the number of adders”,
Proceedings of IEEE ISCAS’01, vol. 2, pp. 693-696, Australia 2001.

[12] Demirsoy S. S., A.G. Dempster and I. Kale, “Design Guidelines for
Reconfigurable Multiplier Blocks”, IEEE ISCAS’03, vol. 4, pp. 293-
296, Thailand, May 2003.

[13] Demirsoy S. S., “Complexity Reduction in Digital Filters and Filter
Banks”, Ph.D. Thesis, University of Westminster, October 2003

[14] Demirsoy S. S., R. Beck, A.G. Dempster and I. Kale, “Reconfigurable
implementation of recursive DCT kernels with reduced quantization
noise”, IEEE ISCAS’2003, vol.4, pp. 289-292, Thailand, May 2003

[15] Turner R. H., T. Courtney and R. Woods, “Implementation of fixed
DSP functions using the reduced coefficient multiplier”, IEEE Proc.
of ICASSP’2001, vol. 2, pp. 881-884, May 2001, USA

[16] Turner R. H., “Functionally diverse programmable logic
implementations of digital signal processing algorithms”, PhD Thesis,
Queen’s University of Belfast, August 2002.

[17] Demirsoy S. S., I. Kale, A. G. Dempster, “Synthesis of
Reconfigurable Multiplier Blocks: Part II- Details of the Algorithm”,
to be publised in IEEE ISCAS’05.

Layer 2 Layer 1 Layer 0 Layer 3

y1(k)

y2(k)
x(k)

y3(k)

539

