

University of Westminster Eprints
http://eprints.wmin.ac.uk

Synthesis of reconfigurable multiplier blocks: part II:
algorithm.

Suleyman Demirsoy1
Izzet Kale1
Andrew Dempster2

1Cavendish School of Computer Science, University of Westminster

2School of Surveying and Spatial Information Systems, University of New
South Wales, Sydney, Australia

Copyright © [2005] IEEE. Reprinted IEEE International Symposium on Circuits and
Systems 2005, pp. 540-543.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

Synthesis of Reconfigurable Multiplier Blocks: Part II-
Algorithm

Süleyman Sırrı Demirsoy, Izzet Kale
Applied DSP and VLSI Research Group

University of Westminster
London, W1W 6UW, UK

{demirss, kalei}@wmin.ac.uk

Andrew G. Dempster
School of Surveying and Spatial Information Systems

University of New South Wales
Sydney, Australia

a.dempster@unsw.edu.au

Abstract— Reconfigurable Multiplier Blocks (ReMB) offer
significant area, delay and possibly power reduction in time-
multiplexed implementation of multiple constant
multiplications. This paper and its companion paper (entitled
Part I- Fundamentals) together present a systematic synthesis
method for Single Input Single Output (SISO) and Single
Input Multiple Output (SIMO) ReMB designs. This paper
illustrates the synthesis method through examples. The
companion paper presents the necessary foundation and
terminology needed for developing a systematic synthesis
technique. The proposed method achieves reduced logic-depth
and area over standard multipliers / multiplier blocks.

I. INTRODUCTION
The companion paper [1] described new terminology and

novel concepts for the design of Reconfigurable Multiplier
Blocks (ReMB) for Single Input Single Output (SISO) and
Single Input Multiple Output (SIMO) systems. In this paper,
we present the details of a systematic synthesis method for
SISO and SIMO ReMB. Section 2 will explain the flow of
the method by the help of two design examples. These
examples reveal the functionality of the algorithm to the
maximum extent. Section 3 will conclude the paper.

The algorithm is implemented in MATLAB and is used
for several applications as presented in [2] and [3]. Due to
space restrictions the performance of the algorithm couldn’t
be discussed here. However, a full discussion on the
algorithm can be found in [2].

II. DETAILS OF THE ALGORITHM
An abstract level flow diagram of the algorithm is given

in Fig. 1. Each step in the diagram (after the initialization
step) will be detailed with the help of design examples in the
following text.

Let us consider a ReMB design with a single output
node. It has four configuration stages with the coefficient set
given as {39, 45, 41, 47}. After the algorithm initializes, the
basic-structure-depth of the output node needs to be
calculated.

Figure 1 The flow diagram of the proposed ReMB algorithm

Since the algorithm uses the simplest basic structure for
all designs, a coefficient set size of four implies a basic-
structure-depth of two. Moreover, the coefficients are all
cost-2. Therefore, the basic-structure-depth of the node is
found as two.

Next, graph tables are formed for each coefficient. The
graphs that are pre-stored in a file are searched. If the
coefficient costs of the fundamentals forming the graph (a
and b in Fig. 2a) are smaller than the basic-structure-depth
and the magnitudes of the fundamentals are smaller than a
limit number defined as the smallest power of two that is
larger than all the coefficients in the node vector (for the
current design, the limit number is 64), they are added to the
graph-tables. Fig. 3 displays the graph tables generated for
the given coefficients. The number of graphs is reduced to
avoid the unnecessary complexity in the explanation of the
steps follow.

Calculate the basic-structure-depth of the
output nodes.

Initialize

Build the graph tables for each coefficient

Find possible node-definitions for all output nodes by
combining the graphs in the graph tables on basic structures.

Starting with the highest scored node definition, select a node-
definition for each node such that the commonality of the

fundamental sets are maximized.

Is it layer
1?

 Recursively call the algorithm to
design the preceding layers.

Give a score to each node-definition according to the
utilization of the basic structure and the formation of

its fundamental sets.

Output the node-
definitions

yes no

5400-7803-8834-8/05/$20.00 ©2005 IEEE.

 (a) (b)
Figure 2 (a) An example graph (b) The basic structure used in the

algorithm to generate the index space.

The graphs of different coefficients on the same node are
combined on a basic structure, when at least one of the edge
values (c and d in Fig. 2a) is same (for the basic structure in
Fig. 2b). The procedure of creating a node-definition will be
explained in Fig. 4. However, before generating a node-
definition, an overall investigation of the edge values has to
be done to identify which graphs can be combined. For this
purpose, an index space consisting of the indexes of the
graphs with matching edge values is built. Table 1 shows
the index space for the graph-tables in Fig. 3 for node-
definitions on a basic structure as given in Fig. 2(b). The
graphs for the first coefficient in the coefficient set are taken
as reference and the graphs of the other coefficients that can
be combined with these graphs are identified. The indexes
are displayed in two separate columns per coefficient
depending on the number of matching edges with the
reference graph.

The index space makes the search of node-definitions
easier. Each node-definition will have one graph for each
coefficient. Therefore, for the current design, four indexes
from 1st, 2nd or 3rd, 4th or 5th, 6th or 7th columns have to be
picked up on any given row. The algorithm automatically
goes over all the combinations of indexes to find all possible
node-definitions. To demonstrate how a node-definition is
formed out of the index space, the first index for each
coefficient in Table 1 is chosen, and their corresponding
graphs are combined in Fig. 4 step by step. The first graph is
placed on the inputs a and b1 of the basic structure for
coefficient ‘39’ in configuration state t0. The unused input b2
is assigned an ‘X’ as a “don’t care”. The second graph uses
the other available input b2 since one of its edge values is
different to the edge values of the first graph. In the same
way the third and the forth graphs are added for the
remaining coefficients ‘41’ and ‘47’ respectively. Each
graph is placed at a different configuration state of the node-
definition (t0-t3). All node-definitions built in this way are
examined for two criteria.

• First, the usage of the basic-structure (whether all the
inputs on the basic structure are used or not)

• Secondly the basic-structure-depth of the funda-
mental sets on the node-definition are tested.

If the basic-structure-depth of the fundamental sets is not
smaller than the current basic-structure-depth, the generated
node-definition is discarded.

The node-definition generated in Fig. 4 has to be
discarded since one of its fundamental sets {1, 3, 15, 9}
would have a basic-structure-depth of two, which is the same
as the current basic-structure-depth.

index 1st coef. (39) 2nd coef. (45) 3rd coef. (41) 4th coef. (47)
1

2

3

4

5

Figure 3 The graph tables generated for the coefficient set {39, 45, 41,
47}. The number of possible graphs is reduced for easier explanation of

the algorithm.

TABLE I. THE INDEX SPACE FOR THE GRAPH TABLES GIVEN IN FIG. 3
Graph index for
the 2nd coefficient

(45)

Graph index for
the 3rd coefficient

(41)

Graph index for
the 4th coefficient

(47)

Graph
index for

the 1st
coefficient

(39) c & d
same

c same,
d different

c & d
same

c same,
d different

c & d
same

c same,
d different

1 [] 1, 4 3 [] 1 3
2 3 2, 5 4 1, 2, 5 5 2, 4
3 [] 1, 4 1 [] 1 3
4 2 3, 5 5 1, 2, 3 [] 2, 4, 5
5 3 2, 5 4 1, 2, 5 5 2, 4

By going over all the combinations of the indexes in the
index-space, all the node-definitions that suit the validity
criteria are generated. Five of these are displayed in Fig. 5.

Next, each of the valid node-definitions is given a score
by the use of a Score Cost Function (SCF), which can
depend on several parameters. The output of the algorithm
can be adapted to new design conditions by changing the
SCF.

A typical SCF can employ the following parameters:

• The variance of the cost of the fundamentals in the
input sets a, b1 and b2, denoted as 2

iσ , i being the
input set index.

• Number of different fundamentals in an input set,
denoted as il ,

• And the existence of input sets comprising only ‘1’
as a fundamental, denoted as ix1 .

2
iσ is zero when the costs of the fundamentals in the set

are all the same, and increases as the cost changes. Minimal
variance of the fundamental costs is desired to effectively
generate each coefficient at its minimal cost and not more.

a

b

c

d x

a

b1

c

b2

d1

d2

33

7

1

2

31

1

1

16

15

31

-1

2

15

1

1

32

9

7 8

-1

33

1

1

8

31

5

1

2

15

7

-1

8

9

1

1

32

5

9

1

4

15

15

1

2

33

3

1

4

17

31

-1

2

5

5 8

1

3

3

-1

16

133

3 2

31

1

1

8

17

7

-1

8

9

15

1

2

1

5

-1

8

541

il will be maximum when it is equal to the output set
size defined by the basic-structure-depth (bsdl) to increase the
utilization of the basic structures.

ix1 is either zero or one depending on having a
fundamental set comprising only ‘1’. As ‘1’ does not require
a basic structure to be generated, having fundamental sets
comprising only ‘1’ is desirable.

These parameters can be combined in a generalized SCF
as follows:

))(1(32210
ibsdiiiii

i
i wwxwwscore ll −×−×−×= ∑ σ (1)

where 31
ii ww − are weights for each parameter specified

above, and 0
iw is the weight for different input sets. These

weights can be changed to prioritize any of the parameters.
Furthermore, new parameters can be added to the function
very easily. For example the variance of the magnitudes of
the numbers in a set can be another small priority parameter.
If there is more than one type of basic structure used in the
algorithm, the SCF can prioritize one among the others by
having another parameter.

The node-definitions in our example design are scored
with the weights 30

ii ww − as {1,2,1,-1} and displayed in
descending order of their score in Fig. 5. These weights are
not necessarily optimal values for an efficient design. They
are chosen to reveal more about the functioning of the
algorithm in our design example.

In the example design given here, there are in total five
alternative node-definitions. The highest scored one will be
chosen as the solution in the following steps. In general, if
no node-definitions can be built for any of the output nodes,
the algorithm cannot proceed any further to the solution and
it terminates. If the algorithm exits during its top-level call, a
higher basic-structure-depth should be forced into the

algorithm for searching the solution in a bigger space. If this
situation occurs during one of the recursive calls in an
intermediate layer, the algorithm overcomes the problem by
automatically changing the proposed solution for the
initiating layer and recursively calls the algorithm with the
new fundamental sets.

After scoring all the node definitions, the next task is to
choose node-definitions for each node such that, the
fundamental sets required in total will be of minimal size. In
the example explained until now, there is only one node
vector hence the procedure involving two or more nodes are
not required. The highest scored node-definition (the 1st
node in Fig. 5) is chosen as the winner and its fundamental
sets {31, 33}, {7} and {1} are defined as the new inputs of
the algorithm for the next recursive call.

The fundamental sets that have to be designed in the
preceding layers of the design are classified in two groups
for the next recursive run of the algorithm. The fundamental
sets that have to be generated in the preceding layer are
defined as the new output nodes, and the sets that will be
generated in the deeper layers are defined as the feed-
through sets. This decision is based on the basic-structure-
depth of the fundamental sets. Feed-through sets are not
designed until the algorithm reaches down to their basic-
structure-depth in the design. Assume that a node-definition
in layer R required a fundamental set F from layer (R-3).
The algorithm does not consider designing that particular
fundamental set F in layers (R-1) and (R-2). However,
because the set F is already required by a node-definition in
the design, the algorithm prioritize the node-definitions that
can make use of set F in the layer (R-1) and (R-2) to
minimize the number of nodes in the design.

In the current design example, {31, 33} and {7} have
basic-structure-depth of one, and hence they are assigned as
output nodes in the next recursive run of the algorithm. The

Step 1 Step 2 Step 3 Step 4

-1

8
d2

X

5

1
t0

X

5

1
t0

-1

8
163][X

X][5

3][1
t1][t0

3][X

X][5

3][1
t1][t0

-1

8
16

X]3[X

7]X[5

15]3[1
t2]t1[t0

X]3[X

7]X[5

15]3[1
t2]t1[t0

-1

8
16

X]X3[X

7]7X[5

9]153[1
t3]t2t1[t0

X]X3[X

7]7X[5

9]153[1
t3]t2t1[t0

First graph of the first
coefficient (39) is
implemented on the
basic structure

First graph of the second
coefficient(45) is placed on
the available input of the
multiplexer.

Third graph of the third
coefficient (41) is added to
the node-definition.

First graph of the forth coefficient
(47) is added to the graph.

Figure 4 The steps for generating a node-definition out of the index space.

Coefficients generated by the node definitions: 47]4145[39
t3]t2t1[t0

47]4145[39
t3]t2t1[t0

1

8
2

7]X7[X

X]1X[1

33]3331[31
t3]t2t1[t0

7]X7[X

X]1X[1

33]3331[31
t3]t2t1[t0

1

2
32

1]1X[X

X]X15[15

15]915[9
t3]t2t1[t0

1]1X[X

X]X15[15

15]915[9
t3]t2t1[t0

-1

8
2

31]X31[X

X]7X[7

15]1517[17
t3]t2t1[t0

31]X31[X

X]7X[7

15]1517[17
t3]t2t1[t0

1

8
2

7]57[X

X]XX[1

33]3131[31
t3]t2t1[t0

7]57[X

X]XX[1

33]3131[31
t3]t2t1[t0

1

2

4X]93[X

7]XX[3

33]533[33
t3]t2t1[t0

X]93[X

7]XX[3

33]533[33
t3]t2t1[t0

Figure 5 The node-definitions generated by the algorithm for the set {39, 45, 41, 47}. They are displayed in descending order of score.

542

set {1} has a basic-structure-depth of zero, therefore it is
assigned as a feed-through set.

The next run of the algorithm for basic-structure-depth of
one concludes the design since the fundamental sets consist
of ‘1’ only. The resulting ReMB structure is given in Fig. 6.
Since {7} includes only one number, a basic structure is not
required and 7 is formed with only a subtractor. The design
is composed of two basic structures and a subtractor as
opposed to five adders and a multiplexer stage if designed as
a multiplier block by the RAG-n algorithm [4]. In a Virtex
FPGA implementation it would occupy three half slices per
bit where as the RAG-n design would occupy seven half
slices per bit.

1

8
2

32

1
-1

7
8

-1

33
31

39
45
41
47

Layer 2Layer 1Layer 0

Figure 6 The ReMB generated by the algorithm for the set {39,45,41,47}

To explain the decision procedure of the node-definitions
in the existence of the multiple nodes, we extend our initial
example to include one more coefficient set, {61, 11, 27,
57}. This new node also has a basic-structure-depth of two.
The order of the coefficients are decided according to the
configuration state they are required. For example, ‘39’ and
‘61’ are required at the same configuration. The algorithm is
run with both of the sets declared as output nodes. It
generates graph tables, index space and node-definitions for
both nodes separately. Fig. 3, Table 1 and Fig. 5 are not
affected because of the additional coefficient set.

Having the scored node-definitions at hand for all output
nodes, the algorithm picks the highest scored node-definition
to start forming the design. If there was a feed-through set
declared in the algorithm call, then the highest scored node-
definition, which has the feed-through set as an input, would
be selected. In the design example, the highest scored node
is the first node-definition of the first node given in Fig. 5
with the input vectors [31 31 33 33], [X 7 X 7] and [1 X 1
X]. The input vector [1 X 1 X] is transformed into [1 1 1 1]
since the input signal is available at all configurations. The
input vectors of the selected node-definition are then
searched on the node-definitions of the remaining nodes.
The node-definition having the highest number of matching
input vectors and having the highest score is then selected as
the solution for that particular node. The matching process is
a complex task that checks the ‘X’ states of the vectors and
identifies the vectors that are subsets of another to minimize
the number of fundamental sets.

The highest scored node-definition with matching input
vectors for the 2nd node is shown in Fig. 7(a) and is
designated as the solution. The vector [1 X 1 X] is a subset

of [1 1 1 1]. Moreover, the input vector [X 7 X 7] for the
first node-definition is covered by the new vector [3 7 7 7].

-1

64
2

X]179[X

1]XX[1

7]77[3
t3]t2t1[t0

X]179[X

1]XX[1

7]77[3
t3]t2t1[t0

57]2711[61
t3]t2t1[t0

57]2711[61
t3]t2t1[t0

 (a)
X]179[X
1]11[1

7]77[3
33]3331[31
t3]t2t1[t0

X]179[X
1]11[1

7]77[3
33]3331[31
t3]t2t1[t0

(b)

Figure 7 (a) The winner node-definition for the 2nd node. (b) The input
vectors for the layer 2 of the design example

The input vectors required in the current layer of the
design (layer 2, since the basic-structure-depth is two) are
given in Fig. 7(b). Their corresponding fundamental sets
{31, 33}, {3, 7} and {9, 17} have to be designed in the
consecutive call of the algorithm. Therefore, these sets are
defined as output nodes, and {1} is again defined as a feed-
through set for the next run.

The resulting ReMB design is shown in Fig. 8. It
consists of two more basic structures than the design given in
Fig. 6. The algorithm efficiently added the second
coefficient set for the second node by making use of the
fundamentals that were already required for the first node.

1

8
2

32

1
-1

3
7

8

-1

33
31 39

45
41
47

Layer 2Layer 1Layer 0

4

9
17

16

1
8

-1
64
2

61
11
27
57

1

8
2

32

1
-1

3
7

8

-1

33
31 39

45
41
47

Layer 2Layer 1Layer 0

4

9
17

16

1
8

-1
64
2

61
11
27
57

Figure 8 The ReMB design generated by the algorithm for the coefficient
sets {39, 45, 41, 47} and {61, 11, 27, 57}.

III. CONCLUSION
A novel method for designing SISO and SIMO ReMB is

presented. The method can handle different basic structures
and with the aid of an SCF, the decision mechanism can be
easily changed to address different design constraints and
conditions.

REFERENCES
[1] Demirsoy S. S., I. Kale, A. G. Dempster, “Synthesis of reconfigurable

multiplier blocks:Part I-Fundamentals”, to be published IEEE
ISCAS’05.

[2] Demirsoy S. S., “Complexity Reduction in Digital Filters and Filter
Banks”, Ph.D. Thesis, University of Westminster, October 2003

[3] Demirsoy S. S., A.G. Dempster and I. Kale, “Efficient
Implementation of Digital Filters using Reconfigurable Multiplier
Blocks”, .Asilomar Conf. on Signal, Systems and
Computers,November 2004, CA

[4] Dempster A.G. and Macleod M.D., “Use of minimum-adder
multiplier-blocks in FIR digital filters”, IEEE Trans. CAS-II, vol. 42,
no. 9, pp. 569-577, November 1995.

543

