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Abstract— Reconfigurable Multiplier Blocks (ReMB) offer 
significant area, delay and possibly power reduction in time-
multiplexed implementation of multiple constant 
multiplications.  This paper and its companion paper (entitled 
Part I- Fundamentals) together present a systematic synthesis 
method for Single Input Single Output (SISO) and Single 
Input Multiple Output (SIMO) ReMB designs. This paper 
illustrates the synthesis method through examples. The 
companion paper presents the necessary foundation and 
terminology needed for developing a systematic synthesis 
technique. The proposed method achieves reduced logic-depth 
and area over standard multipliers / multiplier blocks.   

I. INTRODUCTION 
The companion paper [1] described new terminology and 

novel concepts for the design of Reconfigurable Multiplier 
Blocks (ReMB) for Single Input Single Output (SISO) and 
Single Input Multiple Output (SIMO) systems.  In this paper, 
we present the details of a systematic synthesis method for 
SISO and SIMO ReMB.  Section 2 will explain the flow of 
the method by the help of two design examples.  These 
examples reveal the functionality of the algorithm to the 
maximum extent.  Section 3 will conclude the paper.   

The algorithm is implemented in MATLAB and is used 
for several applications as presented in [2] and [3].  Due to 
space restrictions the performance of the algorithm couldn’t 
be discussed here.  However, a full discussion on the 
algorithm can be found in [2].   

II. DETAILS OF THE ALGORITHM 
An abstract level flow diagram of the algorithm is given 

in Fig. 1.  Each step in the diagram (after the initialization 
step) will be detailed with the help of design examples in the 
following text.   

Let us consider a ReMB design with a single output 
node.  It has four configuration stages with the coefficient set 
given as {39, 45, 41, 47}.  After the algorithm initializes, the 
basic-structure-depth of the output node needs to be 
calculated. 

Figure 1 The flow diagram of the proposed ReMB algorithm 

Since the algorithm uses the simplest basic structure for 
all designs, a coefficient set size of four implies a basic-
structure-depth of two.  Moreover, the coefficients are all 
cost-2.  Therefore, the basic-structure-depth of the node is 
found as two.   

Next, graph tables are formed for each coefficient.  The 
graphs that are pre-stored in a file are searched.  If the 
coefficient costs of the fundamentals forming the graph (a 
and b in Fig. 2a) are smaller than the basic-structure-depth 
and the magnitudes of the fundamentals are smaller than a 
limit number defined as the smallest power of two that is 
larger than all the coefficients in the node vector (for the 
current design, the limit number is 64), they are added to the 
graph-tables.  Fig. 3 displays the graph tables generated for 
the given coefficients.  The number of graphs is reduced to 
avoid the unnecessary complexity in the explanation of the 
steps follow. 

Calculate the basic-structure-depth of the 
output nodes. 

Initialize 

Build the graph tables for each coefficient 

Find possible node-definitions for all output nodes by 
combining the graphs in the graph tables on basic structures. 

Starting with the highest scored node definition, select a node-
definition for each node such that the commonality of the 

fundamental sets are maximized. 

Is it layer 
1? 

 Recursively call the algorithm to 
design the preceding layers.  

Give a score to each node-definition according to the 
utilization of the basic structure and the formation of 

its fundamental sets. 

Output the node-
definitions 

yes no 
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 (a)     (b) 
Figure 2 (a) An example graph (b) The basic structure used in the 

algorithm to generate the index space. 

The graphs of different coefficients on the same node are 
combined on a basic structure, when at least one of the edge 
values (c and d in Fig. 2a) is same (for the basic structure in 
Fig. 2b).  The procedure of creating a node-definition will be 
explained in Fig. 4.  However, before generating a node-
definition, an overall investigation of the edge values has to 
be done to identify which graphs can be combined.  For this 
purpose, an index space consisting of the indexes of the 
graphs with matching edge values is built.  Table 1 shows 
the index space for the graph-tables in Fig. 3 for node-
definitions on a basic structure as given in Fig. 2(b).  The 
graphs for the first coefficient in the coefficient set are taken 
as reference and the graphs of the other coefficients that can 
be combined with these graphs are identified.  The indexes 
are displayed in two separate columns per coefficient 
depending on the number of matching edges with the 
reference graph.   

The index space makes the search of node-definitions 
easier.  Each node-definition will have one graph for each 
coefficient.  Therefore, for the current design, four indexes 
from 1st, 2nd or 3rd, 4th or 5th, 6th or 7th columns have to be 
picked up on any given row.  The algorithm automatically 
goes over all the combinations of indexes to find all possible 
node-definitions.  To demonstrate how a node-definition is 
formed out of the index space, the first index for each 
coefficient in Table 1 is chosen, and their corresponding 
graphs are combined in Fig. 4 step by step.  The first graph is 
placed on the inputs a and b1 of the basic structure for 
coefficient ‘39’ in configuration state t0.  The unused input b2 
is assigned an ‘X’ as a “don’t care”.  The second graph uses 
the other available input b2 since one of its edge values is 
different to the edge values of the first graph.  In the same 
way the third and the forth graphs are added for the 
remaining coefficients ‘41’ and ‘47’ respectively.  Each 
graph is placed at a different configuration state of the node-
definition (t0-t3).  All node-definitions built in this way are 
examined for two criteria.   

• First, the usage of the basic-structure (whether all the 
inputs on the basic structure are used or not) 

• Secondly the basic-structure-depth of the funda-
mental sets on the node-definition are tested.   

If the basic-structure-depth of the fundamental sets is not 
smaller than the current basic-structure-depth, the generated 
node-definition is discarded.   

The node-definition generated in Fig. 4 has to be 
discarded since one of its fundamental sets {1, 3, 15, 9} 
would have a basic-structure-depth of two, which is the same 
as the current basic-structure-depth.   

index 1st coef. (39) 2nd coef. (45) 3rd coef. (41) 4th coef. (47) 
1 

    
2 

  
3 

  
4 

  
5 

  
Figure 3 The graph tables generated for the coefficient set {39, 45, 41, 
47}.  The number of possible graphs is reduced for easier explanation of 

the algorithm. 

TABLE I.  THE INDEX SPACE FOR THE GRAPH TABLES GIVEN IN FIG. 3 
Graph index for 
the 2nd coefficient 

(45) 

Graph index for 
the 3rd coefficient 

(41) 

Graph index for 
the 4th coefficient 

(47) 

Graph 
index for 

the 1st 
coefficient 

(39)  c & d 
same 

c same, 
d different

c & d 
same 

c same, 
d different 

c & d 
same 

c same, 
d different

1 [] 1, 4 3 [] 1 3 
2 3 2, 5 4 1, 2, 5 5 2, 4 
3 [] 1, 4 1 [] 1 3 
4 2 3, 5 5 1, 2, 3 [] 2, 4, 5 
5 3 2, 5 4 1, 2, 5 5 2, 4 

 

By going over all the combinations of the indexes in the 
index-space, all the node-definitions that suit the validity 
criteria are generated.  Five of these are displayed in Fig. 5.   

Next, each of the valid node-definitions is given a score 
by the use of a Score Cost Function (SCF), which can 
depend on several parameters.  The output of the algorithm 
can be adapted to new design conditions by changing the 
SCF.   

A typical SCF can employ the following parameters: 

• The variance of the cost of the fundamentals in the 
input sets a, b1 and b2, denoted as 2

iσ , i being the 
input set index. 

• Number of different fundamentals in an input set, 
denoted as il , 

• And the existence of input sets comprising only ‘1’ 
as a fundamental, denoted as ix1 . 

2
iσ is zero when the costs of the fundamentals in the set 

are all the same, and increases as the cost changes.  Minimal 
variance of the fundamental costs is desired to effectively 
generate each coefficient at its minimal cost and not more. 
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il  will be maximum when it is equal to the output set 
size defined by the basic-structure-depth ( bsdl ) to increase the 
utilization of the basic structures. 

ix1  is either zero or one depending on having a 
fundamental set comprising only ‘1’.  As ‘1’ does not require 
a basic structure to be generated, having fundamental sets 
comprising only ‘1’ is desirable.  

These parameters can be combined in a generalized SCF 
as follows: 

 ))(1( 32210
ibsdiiiii

i
i wwxwwscore ll −×−×−×= ∑ σ  (1) 

where 31
ii ww − are weights for each parameter specified 

above, and 0
iw is the weight for different input sets.  These 

weights can be changed to prioritize any of the parameters.  
Furthermore, new parameters can be added to the function 
very easily.  For example the variance of the magnitudes of 
the numbers in a set can be another small priority parameter.  
If there is more than one type of basic structure used in the 
algorithm, the SCF can prioritize one among the others by 
having another parameter.   

The node-definitions in our example design are scored 
with the weights 30

ii ww −  as {1,2,1,-1} and displayed in 
descending order of their score in Fig. 5.  These weights are 
not necessarily optimal values for an efficient design.  They 
are chosen to reveal more about the functioning of the 
algorithm in our design example.     

In the example design given here, there are in total five 
alternative node-definitions.  The highest scored one will be 
chosen as the solution in the following steps.  In general, if 
no node-definitions can be built for any of the output nodes, 
the algorithm cannot proceed any further to the solution and 
it terminates.  If the algorithm exits during its top-level call, a 
higher basic-structure-depth should be forced into the 

algorithm for searching the solution in a bigger space.  If this 
situation occurs during one of the recursive calls in an 
intermediate layer, the algorithm overcomes the problem by 
automatically changing the proposed solution for the 
initiating layer and recursively calls the algorithm with the 
new fundamental sets.   

After scoring all the node definitions, the next task is to 
choose node-definitions for each node such that, the 
fundamental sets required in total will be of minimal size.  In 
the example explained until now, there is only one node 
vector hence the procedure involving two or more nodes are 
not required.  The highest scored node-definition (the 1st 
node in Fig. 5) is chosen as the winner and its fundamental 
sets {31, 33}, {7} and {1} are defined as the new inputs of 
the algorithm for the next recursive call.  

The fundamental sets that have to be designed in the 
preceding layers of the design are classified in two groups 
for the next recursive run of the algorithm.  The fundamental 
sets that have to be generated in the preceding layer are 
defined as the new output nodes, and the sets that will be 
generated in the deeper layers are defined as the feed-
through sets.  This decision is based on the basic-structure-
depth of the fundamental sets.  Feed-through sets are not 
designed until the algorithm reaches down to their basic-
structure-depth in the design.  Assume that a node-definition 
in layer R required a fundamental set F from layer (R-3).  
The algorithm does not consider designing that particular 
fundamental set F in layers (R-1) and (R-2).  However, 
because the set F is already required by a node-definition in 
the design, the algorithm prioritize the node-definitions that 
can make use of set F in the layer (R-1) and (R-2) to 
minimize the number of nodes in the design.   

In the current design example, {31, 33} and {7} have 
basic-structure-depth of one, and hence they are assigned as 
output nodes in the next recursive run of the algorithm.  The 
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First graph of the first 
coefficient (39) is 
implemented on the 
basic structure 

First graph of the second 
coefficient(45) is placed on 
the available input of the 
multiplexer. 

Third graph of the third 
coefficient (41) is added to 
the node-definition. 

First graph of the forth coefficient 
(47) is added to the graph. 

Figure 4 The steps for generating a node-definition out of the index space. 
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Figure 5 The node-definitions generated by the algorithm for the set {39, 45, 41, 47}.  They are displayed in descending order of score.
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set {1} has a basic-structure-depth of zero, therefore it is 
assigned as a feed-through set.   

The next run of the algorithm for basic-structure-depth of 
one concludes the design since the fundamental sets consist 
of ‘1’ only.  The resulting ReMB structure is given in Fig. 6.  
Since {7} includes only one number, a basic structure is not 
required and 7 is formed with only a subtractor.  The design 
is composed of two basic structures and a subtractor as 
opposed to five adders and a multiplexer stage if designed as 
a multiplier block by the RAG-n algorithm [4].  In a Virtex 
FPGA implementation it would occupy three half slices per 
bit where as the RAG-n design would occupy seven half 
slices per bit. 

1

8
2

32

1
-1

7
8

-1

33
31

39
45
41
47

Layer 2Layer 1Layer 0

 

Figure 6 The ReMB generated by the algorithm for the set {39,45,41,47} 

To explain the decision procedure of the node-definitions 
in the existence of the multiple nodes, we extend our initial 
example to include one more coefficient set, {61, 11, 27, 
57}.  This new node also has a basic-structure-depth of two.  
The order of the coefficients are decided according to the 
configuration state they are required.  For example, ‘39’ and 
‘61’ are required at the same configuration.  The algorithm is 
run with both of the sets declared as output nodes.  It 
generates graph tables, index space and node-definitions for 
both nodes separately.  Fig. 3, Table 1 and Fig. 5 are not 
affected because of the additional coefficient set.   

Having the scored node-definitions at hand for all output 
nodes, the algorithm picks the highest scored node-definition 
to start forming the design.  If there was a feed-through set 
declared in the algorithm call, then the highest scored node-
definition, which has the feed-through set as an input, would 
be selected.  In the design example, the highest scored node 
is the first node-definition of the first node given in Fig. 5 
with the input vectors [31 31 33 33], [X 7 X 7] and [1 X 1 
X].  The input vector [1 X 1 X] is transformed into [1 1 1 1] 
since the input signal is available at all configurations.  The 
input vectors of the selected node-definition are then 
searched on the node-definitions of the remaining nodes.  
The node-definition having the highest number of matching 
input vectors and having the highest score is then selected as 
the solution for that particular node.  The matching process is 
a complex task that checks the ‘X’ states of the vectors and 
identifies the vectors that are subsets of another to minimize 
the number of fundamental sets.   

The highest scored node-definition with matching input 
vectors for the 2nd node is shown in Fig. 7(a) and is 
designated as the solution.  The vector [1 X 1 X] is a subset 

of [1 1 1 1].  Moreover, the input vector [X 7 X 7] for the 
first node-definition is covered by the new vector [3 7 7 7].   
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Figure 7 (a) The winner node-definition for the 2nd node. (b) The input 
vectors for the layer 2 of the design example 

The input vectors required in the current layer of the 
design (layer 2, since the basic-structure-depth is two) are 
given in Fig. 7(b).  Their corresponding fundamental sets 
{31, 33}, {3, 7} and {9, 17} have to be designed in the 
consecutive call of the algorithm.  Therefore, these sets are 
defined as output nodes, and {1} is again defined as a feed-
through set for the next run.   

The resulting ReMB design is shown in Fig. 8.  It 
consists of two more basic structures than the design given in 
Fig. 6.  The algorithm efficiently added the second 
coefficient set for the second node by making use of the 
fundamentals that were already required for the first node.   
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Figure 8 The ReMB design generated by the algorithm for the coefficient 
sets {39, 45, 41, 47} and {61, 11, 27, 57}. 

III. CONCLUSION 
A novel method for designing SISO and SIMO ReMB is 

presented.  The method can handle different basic structures 
and with the aid of an SCF, the decision mechanism can be 
easily changed to address different design constraints and 
conditions.   

REFERENCES 
[1] Demirsoy S. S., I. Kale, A. G. Dempster, “Synthesis of reconfigurable 

multiplier blocks:Part I-Fundamentals”, to be published IEEE 
ISCAS’05. 

[2] Demirsoy S. S., “Complexity Reduction in Digital Filters and Filter 
Banks”, Ph.D. Thesis, University of Westminster, October 2003 

[3] Demirsoy S. S., A.G. Dempster and I. Kale, “Efficient 
Implementation of Digital Filters using Reconfigurable Multiplier 
Blocks”, .Asilomar Conf. on Signal, Systems and 
Computers,November 2004, CA 

[4] Dempster A.G. and Macleod M.D., “Use of minimum-adder 
multiplier-blocks in FIR digital filters”, IEEE Trans. CAS-II, vol. 42, 
no. 9, pp. 569-577, November 1995. 

543


