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Abstract— Time delays are intrinsic to all existing devices and 
circuits. For the majority of applications, time delays are so 
small that their effects can be disregarded. However, when 
considering feedback amplifiers, depending on open-loop poles 
and loop gain, the effect of a small time delay inside the 
feedback path may turn to be of considerable importance. This 
paper analyzes the frequency response effects associated with 
time delays in feedback amplifiers, exploiting these effects to 
achieve bandwidth enhancements. An illustration of this effect 
is presented using a TL082 in series-shunt configuration, 
attaining 100% bandwidth extension, when associated with a 
36m length RG58 coaxial cable as delay element. 

I. INTRODUCTION 
Delayed feedback is a well established matter in some 
disciplines. For instance, in control systems modeling [1-3] 
time delay is a matter of fundamental importance: the control 
system used when guiding a missile (e.g.) must include a 
variable time delay in the feedback path, due to the 
communication delay between the missile and the controller. 
The effects of the delay on the feedback must be well 
predicted to prevent the risk of deviant behaviors (such as 
oscillations); for the above example this could signify 
missing or hitting the objective. 
However, when discussing circuit design, the concept of 
delayed feedback has been usually disregarded. Although 
similar in nature, few contributions explore the effects of 
delays in feedback amplifiers [4-7]. Major emphasis of past 
achievements in this field point towards the necessity of 
careful design options to avoid stability problems brought by 
excess phase in the feedback path, such as avoiding large 
signal paths in the feedback when designing microwave 
amplifiers [4]. On [5, 6] the authors add a delay element to 
the feedback path of a voltage buffer to enhance rise time. 
On [4, 7] the presence of the delay element is analyzed as an 
excess phase element that can compromise stability. 
Allowing some instability to arise is also a well known 
method of achieving bandwidth enhancements. In fact, the 
inclusion of a delay in the feedback path adds an excess 
phase to the loop promoting instability, but with careful 
control this can lead to bandwidth enhancements. Ultimately, 

even the presence of delay elements, intrinsic to active 
devices can be considered as a means of enhancing 
bandwidth, as well as another aspect to be careful in the 
design stage of very fast circuits. 
In this paper the concept of delayed feedback is analyzed and 
applied to feedback amplifiers. Section 2 explores bandwidth 
enhancement as a result of the inclusion of a delay element 
on the feedback path. Several considerations concerning the 
presence of more than one pole in the feedback loop are also 
presented. Section 3 discusses stability restrictions of the 
proposed method. Section 4 presents a practical 
demonstration of the concept of bandwidth enhancement. 
Finally, section 5 draws some conclusions and points for 
future research. 

II. BANDWIDTH EXTENSION CONCEPT 
Figure 1 represents the general abstract model of a negative 
feedback amplifier with passive feedback (represented by the 
β block). For analysis purposes we will separate the delay 
from the active elements. This way the discussion can be 
applied both to the case where the delay element is 
intentionally added and to the case where the delay is 
inherent to the active elements. Figure 1) represents the two 
possible cases: i) in fig. 1a) the delay appears on the 
feedback path - this may be the case of feedback amplifier 
with added delay; ii) in fig. 1b) the delay appears on the 
direct path, following the amplifier A(s) - this, in turn, would 

 
Figure 1- Feedback amplifier: a) with a delay on the feedback; b) with a 

delay on the direct path 



be the situation of an amplifier with intrinsic delay. Both the 
situations are realistic approaches of negative feedback 
amplifiers and both can be described in the same manner. 
The two control systems on fig. 1) have the same 
characteristic equation. Assuming that the amplifier A(s) is 
accurately described by a transfer function having only poles 
(that is A(s)=Ao/D(s), where D(s)=0 has roots with negative 
real part), the characteristic equation is given by, 

 ( ) 0sD s Ge τ−+ =  (1) 
where G represents the loop gain given by βAo, where D(s) is 
a normalized polynomial in s, such that D(0)=1. 
Furthermore, the two systems in fig. 1) also have the same 
closed-loop magnitude, 
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The only difference between them is the presence of the 
delay term on the numerator of Af(s) for the case in fig. 1b). 
Due to the presence of the exponential term in (2), finding 
analytical solutions for the cut-off frequency of a delayed 
feedback system is a difficult matter. Thus we resorted to 
numerical simulation procedures. 
In order to compare cut-off frequencies between the system 
with delay and the system without delay, we used a three 
step numerical procedure: 
i) The first step finds the cut-off frequency of the system 
without the delay, according to (3)  
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Considering only one pole, the results of (3) are simply, 

 ( ) 11cw G p= +  (4) 
2) The second step finds the cut-off frequency of the system 
including the delay, according to (5) 
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3) Finally on the third step the normalized cut-off frequency 
is computed according to equation (6). 
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fcn can also be interpreted as the relative gain in cut-off 
frequency between both systems, with and without delay. 
The same set of loop gains (G) is assumed for all the three 
steps of the procedure. For the case of a simple first order 
system, fcn is the solution of the following implicit equation, 
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Special care must be taken when finding the numerical 
solutions of (5). The exponential term can produce 
oscillatory behaviors on frequency response as shown on 
figure 2), producing multiple roots on equation (5). Here, the 

cut-off frequency can be approximated as the first -3dB 
crossing of the system’s frequency response. 
Figure 2) shows frequency response plots according to 
equation (2), for several values of the time delay (assuming a 
normalized one pole transfer function with p1=1rad/s and 
Ao=1000). Two observations can be made: i) the bandwidth 
increase is noticeable even for values of the time delay 
smaller than the amplifier time constant (1/wc≈9,9ms with 
G=100); ii) frequency peaking (and associated oscillatory 
behaviors) appear for time-delays larger than the amplifier 
time constant. 
Figure 3) shows plots of fcn for several values of time delay. 
As in figure 2), the suspected bandwidth enhancements are 
here clear. fcn shows a peaking behavior as a function of time 
delay, loop gain and pole frequency. This peaking behavior 
can be interpreted in the following way: as G increases, 
decreasing the circuit’s time constant, the relative gain in 
cut-off frequency also increases. This increase is maintained 
until the circuit’s time constant (affected by the feedback) 
becomes comparable to the delay. Further increases on G 
give rise to oscillatory behaviors, decreasing fcn. 
The plots of figure 3 show that fcn has almost constant 
maximums for systems with one pole and one delay on the 
feedback loop. This can be easily verified, assuming G>>1 
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Figure 2 - Frequency response (magnitude) for different delays 
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Figure 3 - Normalized cut-off frequency as function of the loop gain (for 

various delay values) 



and taking the zero off the first derivative of (7). The 
approximate solution for the maximum is given by (8). 
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According to equation (8) the maximum attainable cut-off 
frequency gain is 2.414, representing an extension in 
bandwidth of 141.4%. However, there are several factors that 
limit this maximum gain in reality, namely: i) stability 
limitations – as shown in figure 2 oscillatory behaviors may 
arise; ii) open loop gain (A0) – a natural limitation on the 
loop-gain; iii) the presence of more than one pole – posing 
limitations on the maximum gain and on stability; and, iv) 
the real delay element - pure delays are difficult to synthesize 
as desired. 

A. Higher order systems with delay 
The analysis of higher order systems can be done in similar 
manner as before. Figure 4) and 5) shows fcn plots, for a 
system with two poles and delay. The first pole was assumed 
to be dominant, and placed at the frequency of 1rad/s. The 
second pole occurs at a frequency of d rad/s. The plots on 
figure 4) show fcn for several values of the delay, with fixed 
pole separation (d=100). As before, the presence of the delay 
element in the feedback loop produces a peaking behavior. 
However, the amplitude of the peaks decreases with 
increasing loop gains. Figure 5) shows fcn plots for various 
values of the pole separation constant, d, with fixed delay 
(τ=0.01s). When the two poles are closely placed, the 
peaking effect is negligible; this is a major limitation for the 
maximum attainable bandwidth gain, in real systems. 

III. STABILITY RESTRICTIONS 
A feedback system with one or two poles characteristic 
equation is always stable under negative feedback 
constraints, as long as the poles have negative real parts. The 
root-locus of a second order system has two branches 
beginning on the poles and splitting vertically to infinity 
from the medium point between them (if both poles are real, 
the splitting occurs on the real axis). The presence of a delay 

in a second order system generates an infinite number of 
branches that cross the imaginary axis through the positive 
real side of the complex plane (a magnified sketch near the 
origin is presented in figure 6). The original branches of the 
second order system (those beginning on the system poles) 
are bent towards the positive side of s (see figure 6). 
The effect of the delay is to promote instability on the overall 
system (this is also true for a first order system). However 
the system behavior is primarily ruled by the system open 
loop poles (as these are the roots that originate the critical 
branches), as long as the delay is small enough in order to 
have sufficient separation between the secondary branches. 

A. Marginal Stability 
Marginal stability conditions limit the maximum realizable 
loop-gain, and consequently the maximum bandwidth benefit 
in delayed feedback systems. 
In a delayed feedback system with only poles inside the 
feedback loop, the characteristic equation is expressed by 
(1). Using s=x+jy, the characteristic equation can be written, 
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Where Dr(x,y) and Di(x,y) are respectively, the real and 
imaginary parts of D(s). Marginal stability can be evaluated 
through the points where the root-locus crosses the 
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Figure 4 - Normalized cut-off frequency of a second order system with 

delay, for various delay values. 
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Figure 5- Normalized cut-off frequency of a second order system with 

delay, for various pole separation values. 
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Figure 6- Root locus for a system with two poles and delay (magnified 

sketch near the origin). 



imaginary axis. These intersections are simply the solutions 
of (9) setting x=0, resulting in the following (where y0 are 
the imaginary axis intercept points), 
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Equation (10) gives information on the oscillating 
frequencies, while equation (11) provides the necessary loop-
gain to achieve marginal stability. As can be seen in (10), 
finding y0 is a numerical process, with no immediate 
analytical solution (except for cases where the quotient of Di 
to Dr is a constant value). To prevent oscillations is sufficient 
to adjust G with values below those predicted by equation 
(11). Table (1) summarizes the forms of equations (10) and 
(11) for systems of orders 1, 2 and 3. 

TABLE I.  TABLE 1 MARGINAL STABILITY CONDITIONS 
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IV. EXPERIMENTAL RESULTS 
This bandwidth enhancement concept was analyzed in a real 
circuit, using an TL082 operational amplifier (as in figure 
7)). We used as delay element a variable length transmission 
line (TL), consisting of 3 to 36 meters of standard RG58 U/C 
50Ω cable. In order to have a perfect delay, the TL needs to 
be correctly matched (even for small frequencies). This was 
done on both ends of the TL; on the source, a 50Ω match was 
imposed by the unit gain buffer A1; and on the load by a 
similar buffer (A2) with 50Ω input impedance. These buffers 
are simple class AB output stages with large bandwidth (at 
least 2 orders than the expected system bandwidth). 
Figure 8) shows the experimental results for various TL 
lengths. The solid lines represent polynomial fitting curves 
for each data set. The similarity with the theoretical results 
on figure 4) is evident, where larger time delays (larger TL 
lengths) produce large bandwidths at lower loop-gains. 
Deviations from the fitting curves may arise due to modeling 
approximations used for these devices and TL termination 
aspects. 

V. CONCLUSIONS 
A new concept for the bandwidth enhancement has been 
presented. The presence of time delays in feedback 

amplifiers may be explored as a benefit, which can lead to 
bandwidth extensions as high as the theoretical maximum of 
141.4%. Experimental results attain a maximum of almost 
100%, using common discrete electronic components. Better 
results can be achieved using custom designed integrated 
circuits, with simulated delays (both passive and active 
implementations). 
The application of this concept to high frequency design is of 
major interest - in GHz bandwidth amplifiers, small TLs 
feasible in actual IC technologies, may easily produce the 
delays required for large bandwidth improvements. 
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Fig. 7 - Test circuit 
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Fig. 8 - Normalized cut-off frequency (for various transmission-line 

lengths) 


