
Hardware Accelerator Design for Video Segmentation with
Multi-modal Background Modelling

Hongtu Jiang
Digital ASIC Group, CCCD, Department of Electroscience, Lund University

Håkan Ardö
Department of Mathematics, Lund University

Viktor Öwall
Digital ASIC Group, CCCD, Department of Electroscience, Lund University

Abstract— Among many of the algorithms for video segmentation, one
based on statistical background model [1] was developed with the unique
feature of robustness in multi-modal background scenarios. However,
with large amount of calculations due to pixel wise processing of each
frame, such an algorithm could only achieve a low frame rate far
from real-time requirements on computers. In this paper, a hardware
accelerator is proposed, with a dedicated architecture aiming to address
the computation as well as memory bandwidth demand. The whole system
is targeted to an FPGA platform, which is served as a real-time test bench
where long term effects caused by fixed point quantization and various
parameter settings can be studied. Meanwhile, memory bandwidth as
well as memory size are investigated and reduction by up to 60 percent
through similarity exploitation for neighboring Gaussian parameters is
envisioned. Furthermore, an controller synthesis tool is used to relieve
the effort for the manual design of complex control unit, scheduling the
operations of the whole system.

I. INTRODUCTION

Video applications are omnipresent. They are essential for indus-
tries such as surveillance, communications and entertainment. Among
these applications, moving object segmentation is one of the funda-
mental steps to many automated video analysis tasks. For example,
the video coding standard MPEG-4 [2] relies on the decomposition
of each frame of an image sequence into video object planes to
improve coding efficiency and support content based functionality.
Other applications include automated traffic surveillance system, in
which segmentation is regarded as the essential step prior to later
analysis such as vehicle tracking, accident detection etc.

Among many of the early alternative segmentation algorithms,
the ones based on either inter-frame difference or comparison of
current frame with a reference background image were widely used.
While such algorithms may work to some extent in short terms,
they are error prone when dealing with varying background scenes,
e.g. illumination variation over time, an entering object stopping
in the scene. Besides, using inter-frame difference always results
in larger detected object areas and fails to detect slowly moving
object. Nowadays, with the substantial increase of the computation
capacity, such non-adaptive background modelling are abandoned by
most researchers. More and more complex background estimation
methods, adaptive to real world situations, have been proposed.

II. VIDEO SEGMENTATION ALGORITHMS

Chien et al [3] developed an adaptive background model using so
called background registration approach. In their paper, they assume
that the longer a pixel remains stationary, the more probable that
it belongs to the background. By counting whether a pixel stays
approximately in the same value for a predefined period, a new
background pixel is registered to the background memories where
the old value is discarded. In this way, background plane is updated
progressively and the moving object is detected by thresholding the

difference between the current frame and the registered background
plane. A number of other adaptive background models have also been
reported [4]–[6]. Although these algorithms produce better modelling
towards real world scenarios by background learning process, most of
them fail to deal with multi-modal background distribution. A multi-
modal background distribution is caused by repetitive background
object motion, for example, swaying trees, reflections of the lake
surface, flickering of the monitor etc. As the pixel, lying in the region
where repetitive motion occurs, will generally consists of two or more
background colors, the RGB value of that specific pixel changes over
time. This would result in false foreground object detection by most
adaptive background estimation approach mentioned above.

In [1], a background model based on multi-modal pixel distribution
is proposed to address the issue. By representing each pixel process
using a mixture of Gaussian distributions, repetitive background mo-
tions are merged into one of the several background distributions for
each pixel. However, as the algorithm processes video stream pixel-
wise by updating several Gaussian distributions for each pixel, the
calculation burden in parameter updating is unbearable for computers
in real time applications. In [1], only a frame rates of 11-13 frames/s
is obtained even for small frame size of 160x120 on an SGI O2
workstation. For real time video applications with larger frame size,
a dedicated hardware architecture seems to be a must. However, as far
as the authors knowledge, no such hardware implementation has been
reported before. Furthermore, issues emerge with regard to memory
bandwidth and storage when it comes to implementation, which is
quite common to most video/image processing task. Since the update
of background distribution is slow most of the time in a slowly
changing scene, the wordlength of each parameter tends to grow to
fulfil the increasing dynamic range. With a reasonable frame size of
352x288 that is used throughout this paper, and under the assumption
that 3 Gaussian are used for each pixel process, approximately 6 MB
data have to be updated for each frame. This imposes a huge demand
for calculation as well as memory bandwidth and size. In this paper,
a dedicated hardware architecture is developed aiming to address all
the issues mentioned. With an FPGA platform, simulations can be
accomplished in real-time to observe long term effects resulting from
fixed point quantization as well as parameter settings. In addition,
a controller synthesis tool is developed based on [9] to reduce the
design effort for controller design.

The paper is organized as follows. In Section III, the mixed
Gaussian models for multi-modal background is explained. The
hardware architecture is presented in Section IV. In SectionV, an
introduction to the controller design flow is shown. Finally, the results
are presented in section VI, and conclusions are drawn in Section VII.

11420-7803-8834-8/05/$20.00 ©2005 IEEE.

III. GAUSSIAN MIXTURE MODEL

A Gaussian Mixture model was proposed independently by Stauf-
fer and Grimson [1] and Friedman and Russell [12] to model each
pixel in the video sequences based on statistical approach. The
value of each particular pixel in the image frames over time can
be considered as a pixel process. If such pixel lies in the region
belonging to a stationary background object, a single Gaussian
distribution will suffice to model the pixel process while accounting
for acquisition noise. A single Gaussian distribution with varying
mean value and variance would be enough to adapt to the changes,
If only lighting condition changes over time on the pixel. However,
in real world situations, background pixels may consist of several
background object values over time. Consider the visual field covered
by swaying trees from time to time. The pixel value, originally
representing the color of the leave, would change to value of the other
background object when the leave moves away, for example, the road
color. Thus, the value of such specific pixel over time would include
two independent adaptive Gaussian processes representing both the
leave color and the color of the other background object.

In order to meet the needs for modelling multi-modal pixel process,
a mixture of Gaussian distributions are assigned to each one of the
pixels in the image sequences. The whole procedure is formulated
as follows. A pixel process, defined as an collection of most recent
measurements I(x,y,t), where I is the image sequence, can be viewed
as a mixture of several independent noise processes and thus modelled
using the sum of Gaussian distributions with weighting factors. The
probability of observing the current pixel value is

P (Xt) =

K∑
i=1

ωi,t ∗ η(Xt, µi,t, Σi,t),

where K is the number of Gaussian distributions and ω is the
weighting factor. The mixture of Gaussian distributions are ordered
according to ω/σ in decreasing order. The portion of Gaussian
distributions considered as background process is defined by

B = argminb

(
b∑

k=1

ωk > H

)
,

where H is the predefined parameter determining how much
proportion of the mixture distributions accounts for the background
process. When this parameter is small enough, the pixel process in
fact becomes a single adaptive Gaussian distribution. To update the
parameters of each Gaussian, each new pixel value is checked against
the Gaussian mixture. When a match is found, the weight, mean and
variance values of the matched distributions are updated respectively
as follows:

ωk,t = (1 − α)ωk,t + α

µt = (1 − ρ)µt−1 + ρXt

σ2 = (1 − ρ)σ2
t−1 + ρ(Xt − µt)

T (Xt − µt);

where α, ρ is the learning factor. A match is defined as a pixel value
within 2.5 standard deviations of a distribution. For those unmatched,
the weight is updated according to

ωk,t = (1 − α)ωk,t,

while the mean and the variance remain the same. The basic idea
behind such updating scheme is: when the pixel belongs to the
background, it will usually match one of the distributions, and
more evidence is building up upon the matched distribution by its
increasing weight. The mean value is adjusted toward the current

pixel value, which is in fact an adaptation process in case illumination
condition changes. If the pixel represents the foreground object, it
would not, in most cases, match any of the distributions. In this case,
the least probable distribution would be replaced with a distribution
with the current value as its mean value, an initially high variance
and low prior weight. If the object stops moving, the replaced
distribution is matched for a few subsequent frames, and evidence
continues building up upon that distribution until it finally becomes a
background process, thus a new added object is properly incorporated
into the background scene. Otherwise the new distribution would
keep being replaced by new pixel values till a new background is
discovered.

Once the background distributions are defined, a segmented bi-
nary image containing only moving object can be accomplished
by checking each pixel value against the corresponding background
distributions. Such binary image forms the basics for the subsequent
analysis work, eg. noise cancelling, object identification.

IV. HARDWARE IMPLEMENTATION

Maintaining a mixture of Gaussian distributions for each pixel is
costly in terms of both calculation capacity and memory storage,
especially with large frame size. To cope with streaming RGB data
from video camera in real time, a dedicated hardware architecture is
proposed to be used as a simulation platform with streamlined data
flow. On the platform, effects of the number of Gaussian distributions
and parameter properties can be studied. Therefore, the maximum
number of distributions is set to 9, while for real applications, the
number of Gaussian distributions can be lowered substantially, e.g
2 or 3 in total. For simplification, a architecture for 5 Gaussian
distributions per pixel is shown in Fig. 1, which is basically the same
architecture as that of 9 Gaussian distribution . At each clock cycle,
an incoming RGB pixel is read into the matching logic from the input
buffer. Together with the parameters for the corresponding mixture of
Gaussian distribution, a matching process starts. The Gaussian distri-
butions are checked against the incoming pixel in parallel, resulting in
a vector consisting of matching signals. To avoid the competition of
several Gaussian distributions matching the same input pixel, only
the one with the most evidence (highest ω/σ) is selected as the
matching distribution. In the design, a switching logic is included in
the matching logic, deciding on the right matching distribution and
rearranging all the Gaussian distributions. After the matching block,
the only matched distribution is switched to the bottom among all
Gaussian distributions. Depending on whether the new incoming pixel
matches any of the Gaussian distribution, the parameter updating
logic updates the matched distribution accordingly. If none of the
distributions are matched, the mean value of the distribution in the
bottom is replaced by the RGB color of the incoming pixel. The
variance value is replaced with a predefined large value while the
weight is kept intact. In this way, the re-normalization of the weights
are avoided, leading to simplified hardware implementation. On the
other hand, if a match is spotted, multiplications and square root
calculations are performed to update mean and variance values. In
this paper, multiplications and square roots are pipelined into 2 and
3 stages respectively.

The Gaussian distributions after update stages have to be sorted for
use in the next frame. All distributions should be ordered according to
their evidence (ω/σ). In order to fully utilize hardware parallelism
to enhance the sorting speed, various parallel sorting networks are
investigated. Parallel sorting networks [7], [8], [10] have been a
research topic among the academic society for the last three decades.
Many trade-offs have been made regarding sorting speed and number

1143

Gaussian

Switch

Weight
update

Weight

update

Weight

update

Weight

update

Matched

Gaussian

parameter

update

Parameter

compare &

coding

Offchip memory

Parameter

buffer

RGB

bufferPixel
Stream

Pixel matching Parameter
update

Parameter
sorting network

Background
Detection

Data Bus

Binary
image

Matching

logic

Matching

logic

Matching

logic

Matching

logic

Matching

logic

Fig. 1. Simplified Datapath Architecture with only 5 Gaussian distributions per Pixel

of sorting elements employed in the network. For example, bitonic
sort is one of the fastest sorting networks [7] while in [8] only
O(nlog(N)) comparators are used to sort an N input elements.

By the observation that only one Gaussian distribution is updated
at a time, as long as all the distributions are initially in the right order,
the sorting of N Gaussian distributions can be reduced into inserting
an updated distribution among N-1 ordered distributions. As a result,
both number of sorting stages and number of comparators are reduced
substantially to only one sorting stage with N-1 comparators and N
MUXes. The benefits from both a speed and an area considerations
are obtained by removing the redundancy in other existing sorting
networks. The architecture for the sorting is shown in Fig. 1.

Whenever all the Gaussian distributions are sorted in the right
order, background detection could start. By adding up the weights
of all the Gaussian distributions that have more evidence than the
updated one, a binary pixel value is generated depending on whether
the sum is greater than a predefined parameter H. Like the input pixel
value, a binary segmented pixel is streamed out at one bit each clock
cycle.

For slow background updating process, large dynamic range for
each parameter in the distribution is required to record slight changes.
Storing parameters with big wordlength for all Gaussian distributions
incurs heavy memory bandwidth bottlenecks. Consider the back-
ground model with minimum Gaussian distributions, which contains
three Gaussian distributions with two for bi-model background and
one for foreground. C++ simulation shows that both mean and
variance varies for the same Gaussian distribution between different
frames are in the order of 10−4. For fixed number representation, 28
bits are assigned to each RGB mean parameters, among which 8 bits
accounts for integer part while 20 bits for fractional part. The same
number of bits goes for the fractional part of the variance but only 4
bits are needed for integer part. Together with 16 bits for the weight
parameter, one Gaussian distribution contributes to 124 bits. In real
time environment with 25 frames/s and a frame size of 352x288, the
memory bandwidth for reading and writing Gaussian parameters goes
up to nearly 225 MB/s. Without data compressing scheme, such high
demand for memory bandwidth would make it difficult to implement
on some FPGA platforms. In this paper, a data compression scheme
is proposed which utilizes similarities for Gaussian distributions in
adjacent areas. Inspired by the fact that adjacent pixel values are very
close to each other and many video segmentation algorithm works
on pixel blocks instead of on each pixel, there could exist a way to

classify ”similar” Gaussian distributions in adjacent area. In practice,
each Gaussian distribution can be regarded as a three dimensional
cube in the RGB space, where the center of the cube is composed of
RGB mean values whereas the border to the center is specified by 2.5
times variance value. One way to measure the similarity between two
distributions is to check how much volume the two cubes overlaps,
which can be performed by inspecting the deviation of two cube
centers in regard to the border length. The reason for such criteria
lies in the fact that a pixel that belongs to one distribution will most
likely belong to the other if they have much overlapping volume.
Whenever the deviation value in any dimension is greater than 2.5
times the sum of two variances that is defined by the deviation factor,
there is no overlapping volume. In fact, a factor K, can be used as
follows to determine the degree to which two cubes are adjacent to
each other.

µ1R − µ2R ≤ 2.5K(σ1 + σ2)

µ1G − µ2G ≤ 2.5K(σ1 + σ2)

µ1B − µ2B ≤ 2.5K(σ1 + σ2), K ⊂ [0, 1]

Two distributions falls within the criteria are regarded as the same.
By saving only ”different” distributions with the count of the ”same”
succeeding distributions, memory bandwidth are reduced. From sim-
ulation in C++, different K value are chosen to evaluate the reductions
for memory bandwidth. Obviously, with larger K value specified,
more savings could be accomplished. However, more noise would
be generated in the binary image due to increasing error matches in
the matching phase . Fortunately, such noise is non-accumulating and
can be erased by morphology process [11] with appropriate specified
K value. In this paper, a K value of 0.35 is specified, with memory
bandwidth savings of up to 60% reported from C++ simulation. In
order to further decrease the wordlength, variable word length coding
algorithm such as Huffman coding is under consideration in future
implementations.

V. FLEXIBLE DESIGN WITH CONTROLLER SYNTHESIS

There is yet another advantage of implementing the design in
FPGA. Due to its data as well as computation intensive characteris-
tics, simulating the algorithm for the effects on segmentation quality
with different parameter settings as well as data quantization becomes
difficult to achieve on computers, in particular, for long term effects.
In C++, the simulation time for one minute video takes about twenty
minutes. Evaluating long terms effects on computers, for example, the

1144

Fig. 2. Original and Segmented sample images

effects of different numbers of Gaussian distributions in the mixture
in one day period, would take weeks to accomplish. The situation
gets even worse if fixed point quantization noise are considered. With
FPGA implementation, all simulation are done in real-time.

To fully coordinate and schedule all kinds of operations in a
flexible design, a dedicated a controller unit is required. It is crucial
for reusing the same hardware architecture to evaluate different
parameters. In order to reduce the effort of the manual design of a
controller, an controller synthesis tool is developed based on [9]. The
tool takes in the behavioral description of the datapath architecture
defining the available set of micro-operations, and a microprogram
written in C-like input syntax that contains the algorithm with
additional declarations such as memories. As an output a complete
controller with module descriptions and interconnection specifications
is generated. since architecture extensions to basic FSM could result
in optimized controllers in specific application, a range of controller
architectures are supported and can be accessed through architecture
option specification before the synthesis starts. For the current appli-
cation, a controller architecture with incremental circuitry is consid-
ered [9]. In this architecture, the branch address calculation within
the same block of code, composed of only sequential statements, is
performed by the hardware incrementer. At the end of a block a non-
incremental branch address is calculated by the control logic and a
select branch signal is set. This architecture is particularly suitable
for algorithms that have long stretches of sequential statements, i.e.
the next state generation logic in the basic FSM architecture can be
replaced by an incrementer and mux which is more power efficient.
With the tool, more complicated architectures can be implemented
freely based on user requirements and algorithm structures since it
is a fully automated synthesis process.

VI. RESULTS

A dedicated hardware architecture is proposed for the video
segmentation algorithm capable of handle multi-modal background
conditions. The whole system is targeted to Xilinx Virtex2 1000
FPGA platform and has been implemented in VHDL. From the
synthesis results, the system is ready to run on 40MHz due to its
fully streamlined architecture. This will result in 38 FPS for video
sequences with big frame size of 1024 × 1024. C++ simulations
indicate that memory bandwidth savings of up to 60% could be
achieved. Sample images from the original video sequence and
segmented binary video sequence is shown in Fig. 2. Together with
peripheral frame grabber and SDRAM controller, the future FPGA
platform is capable of evaluating the long term effects caused by
various factors, such as number of Gaussian distributions per pixel,
wordlength of each Gaussian parameters, etc.

VII. CONCLUSIONS

A hardware architecture for a video segmentation algorithm based
on statistical background modelling has been presented. The archi-
tecture provides a calculation capacity allowing real-time processing
of relatively large images, 1024×1024, at a frame rate of 38 FPS.
To reduce the large memory bandwidth required for storing Gaussian
parameters, a specific memory scheme is proposed. Substantial mem-
ory bandwidth reductions are envisioned by utilizing similarities for
adjacent Gaussian distributions. On the other hand, to cope with the
task for processing large amount of data, which makes a software
simulation approach impossible for studying long term effects, a
testbench based on an FPGA platform has been developed, capable of
real time evaluation of the system performance as well as parameter
properties. With controller synthesis tool, the effort for manual design
of the control unit is reduced substantially.

ACKNOWLEDGMENT

This work is partially sponsored by Axis Communications
(www.axis.com), and all simulations are performed with the image
data obtained through their network camera AXIS 2120.

REFERENCES

[1] C. Stauffer, W. Grimson, ”Adaptive background mixture models for real-
time tracking”, Proc. IEEE conf. Computer Vision and Pattern Recogni-
tion, 1999.

[2] www.mpeg4.net, 2004.
[3] S. Chien, S. Ma, L.Chen, “Efficient Moving Object Segmentation Algo-

rithm Using Background Registration Technique”, IEEE tran. on circuits
and systems for video technology, July, 2002.

[4] Y. Tsaig, A. Averbuch, ”Automatic Segmentation of Moving objects in
video sequences: A region labeling approach”, IEEE tran. circuits and
systems for video technology, July, 2002.

[5] N. Li, et al, ”Real-time video object segmentation using HSV space”,
Proc. International conf. Image Processing, 2002.

[6] D. Gao, Z. Zhou, ”Adaptive background estimation for real-time traffic
monitoring”, Proc. IEEE conf. Intelligent Transportation Systems, 2001.

[7] K.E. Batcher, ”Sorting Networks and their Applications”. Proc. AFIPS
Spring Joint Comput. Conf., 1968.

[8] M. Ajtai, J. Komlos, S. Szemeredi, ”An O(N log N) Sorting Network”.
Proceedings of the 25th ACM Symposium on Theory of Computing, 1983.

[9] H. Jiang, V. Öwall, ”FPGA Implementation of Controller-Datapath Pair
in Custom Image Processor Design”, Proc. ISCAS, 2004

[10] G.V.Russo, M.Russo, ”A novel class of sorting networks”, IEEE tran.
circuits and systems I: Fundamental Theory and Applications, July, 1996.

[11] H. Hedberg, F. Kristensen, P. Nilsson, V. Öwall, ”A Low Complexity
Architecture For Binary Image Erosion And Dilatation Using Structuring
Element Decomposition”, Proc. ISCAS, 2005

[12] N. Friedman, S. Russell, ”Image segmentation in video sequence”, Proc.
13th conf. Uncertainty in A.I., 1997.

[13] S. Chien et al, ”Single Chip Video Segmentation System with Pro-
grammable PE array”, Proc. IEEE Asia-Pacific Conference on Asic, 2002.

1145

