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ABSTRACT

This paper considers a new generalized method of formulating 2-D
mirror-image polynomials (TMIP) and anti-mirror-image polyno-
mials (TAMIP), starting from the 2-D denominator polynomial of
a digital transfer function. The sets of polynomials are obtained
such that the magnitude response of the starting transfer function
is unaltered. The different cases for the TMIP and the TAMIP are
presented along with how the TMIP and TAMIP can be used to
test the minimum phase property of the 2-D polynomial they were
derived from. The concept and new properties of a 2-D Discrete
Reactance Function are introduced.

1. INTRODUCTION

In a previous paper [1], (1) the denominator polynomial of a 1-
D discrete transfer function is modified such that the magnitude
of the frequency response remains unaltered and (2) the modi-
fied polynomial is decomposed into an infinite number of sums of
mirror-image and anti-mirror image polynomials. The properties
of these decompositions have been discussed in [1]. Some prop-
erties of multivariable mirror-image and anti-mirror image poly-
nomials are discussed in [2][3]. In this paper, the new concept
of generalized 2-D mirror-image and anti-mirror-image polynomi-
als will be discussed. Specifically, a 2-D polynomial contained
in the denominator of a transfer function is modified so that the
magnitude of the frequency response remains unchanged (exten-
sion of the 1-D case). The modified 2-D denominator polynomial
is decomposed into a sum of a two-variable mirror-image poly-
nomial (TMIP) and a two-variable anti-mirror-image polynomial
(TAMIP). The TMIP and TAMIP can be used to test for minimum
phase of the original 2-D polynomial using the concept of inners.
The definition and properties of a 2-D Discrete Reactance Function
(2DDRF) are introduced. In this paper, the notation Z = (z1, z2)
and Z−1 = (z−1

1 , z−1
2 ) is used throughout.

2. DEFINITION OF TMIP AND TAMIP

Let D(Z) be a two-variable polynomial given by

D(Z) =

p1∑
n1=0

p2∑
n2=0

d(n1, n2)z
n1
1 zn2

2 (1)

=

p1∑
k=0

αk(z2)z
k
1 (2)

=

p2∑
m=0

βm(z1)z
m
2 (3)

This forms the denominator polynomial of a 2-D transfer function
given by

T (Z) =
N(Z)

D(Z)
(4)

The polynomial D(Z) is modified to Dm(Z) by multiplication by
the factor zq1

1 zq2
2 where q1 ≥ 0 and q2 ≥ 0. A modified transfer

function Tm(Z) with the same frequency response as T (Z) results
where

Tm(Z) =
N(Z)

Dm(Z)
=

N(Z)

zq1
1 zq2

2 D(Z)
(5)

The polynomial Dm(Z) is expressed as

Dm(Z) =

p1+q1∑
n1=q1

p2+q2∑
n2=q2

d(n1, n2)z
n1
1 zn2

2 (6)

=

p1+q1∑
k=q1

zq2
2 αk(z2)z

k
1 (7)

=

p2+q2∑
m=q2

zq1
1 βm(z1)z

m
2 (8)

The TMIP is denoted as M(Z) and is given as

2M(Z) = Dm(Z) + zp1+q1
1 zp2+q2

2 Dm(Z−1) (9)

= Dm(Z) + zp1
1 zp2

2 D(Z−1) (10)

The TAMIP is denoted as A(Z) and is given as

2A(Z) = Dm(Z) − zp1+q1
1 zp2+q2

2 Dm(Z−1) (11)

= Dm(Z) − zp1
1 zp2

2 D(Z−1) (12)

The above development is an extension of the 1-D case dis-
cussed in [1]. Both the TMIP and the TAMIP can be formed
for any 2-D polynomial. However, it it most useful to develop
the TMIP and TAMIP for a minimum phase polynomial since the
transfer functions T (Z) and Tm(Z) will be BIBO stable. Also, the
new theorems presented in the sequel assume a minimum phase
polynomial.
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2.1. Distinct Cases for TMIP

The various cases for the TMIP arranged in the variable z1 are
given below. Similar cases exist when the TMIP is arranged in
z2. These expressions can be obtained by algebraic manipulation.
The coefficient conditions, given for each case, are in the form of
an allpass transfer function.

Case 1: When q1 = p1 + 1, the TMIP is

2M(Z) = zp1+1
1 zq2

2

p1∑
k1=0

αk1(z2)z
k1
1

+ zp2
2

p1∑
k2=0

αk2(z−1
2 )zp1−k2

1 (13)

The coefficient condition is

coefficient of zi
1

coefficient of z2p1+1−i
1

=
zp2
2 αp1−i(z

−1
2 )

zq2
2 αp1−i(z2)

(14)

for i = 1, 2, · · · , p1.
Case 2: When q1 = p1 + 1 + x1 and x1 > 0, the TMIP is

2M(Z) = zp1+1+x1
1 zq2

2

p1∑
k1=0

αk1(z2)z
k1
1

+ zp2
2

p1∑
k2=0

αk2(z−1
2 )zp1−k2

1 (15)

The coefficient condition is

coefficient of zi
1

coefficient of z2p1+1−i
1

=
zp2
2 αp1−i(z

−1
2 )

zq2
2 αp1−i(z2)

(16)

for i = 1, 2, · · · , p1. For the TMIP, there are x1 terms equal to
zero. These terms should not be taken into account for determining
the coefficient condition.

Case 3: When q1 = p1 + 1 − x1 and x1 > 0, the TMIP is

2M(Z) = zp1+1−x1
1 zq2

2

p1∑
k1=0

αk1(z2)z
k1
1

+ zp2
2

p1∑
k2=0

αk2(z−1
2 )zp1−k2

1 (17)

The coefficient condition is

coefficient of zi
1

coefficient of z2p1+1−i
1

=
zp2
2 αp1−i(z

−1
2 )

zq2
2 αp1−i(z2)

(18)

for i = 1, 2, · · · , q1 and

coefficient of zi
1

coefficient of z2p1+1−i
1

=
zp2
2 αi(z

−1
2 ) + zq2

2 αp1−q1−i(z2)

zq2
2 αp1(z2) + zp2

2 αp1−q1−i(z
−1
2 )
(19)

for i = q1 + 1, · · · , p1 + 1 − q1.

2.2. Distinct Cases for TAMIP

The various cases for the TAMIP arranged in the variable z1 are
given below. Similar cases exist when the TAMIP is arranged in
z2. As for the TMIP, the coefficient conditions are in the form of
an allpass transfer function.

Case 1: When q1 = p1 + 1, the TAMIP is

2A(Z) = zp1+1
1 zq2

2

p1∑
k1=0

αk1(z2)z
k1
1

− zp2
2

p1∑
k2=0

αk2(z−1
2 )zp1−k2

1 (20)

The coefficient condition is

coefficient of zi
1

coefficient of z2p1+1−i
1

= (−1)
zp2
2 αp1−i(z

−1
2 )

zq2
2 αp1−i(z2)

(21)

for i = 1, 2, · · · , p1.
Case 2: When q1 = p1 + 1 + x1 and x1 > 0, the TAMIP is

2A(Z) = zp1+1+x1
1 zq2

2

p1∑
k1=0

αk1(z2)z
k1
1

− zp2
2

p1∑
k2=0

αk2(z−1
2 )zp1−k2

1 (22)

The coefficient condition is

coefficient of zi
1

coefficient of z2p1+1−i
1

=
zp2
2 αp1−i(z

−1
2 )

zq2
2 αp1−i(z2)

(23)

for i = 1, 2, · · · , p1. For the TAMIP, there are x1 terms equal to
zero. These terms should not be taken into account for determining
the coefficient condition.

Case 3: When q1 = p1 + 1 − x1 and x1 > 0, the TMIP is

2A(Z) = zp1+1−x1
1 zq2

2

p1∑
k1=0

αk1(z2)z
k1
1

− zp2
2

p1∑
k2=0

αk2(z−1
2 )zp1−k2

1 (24)

The coefficient condition is

coefficient of zi
1

coefficient of z2p1+1−i
1

= (−1)
zp2
2 αp1−i(z

−1
2 )

zq2
2 αp1−i(z2)

(25)

for i = 1, 2, · · · , q1 and

coefficient of zi
1

coefficient of z2p1+1−i
1

=
−zp2

2 αi(z
−1
2 ) + zq2

2 αp1−q1−i(z2)

zq2
2 αp1(z2) + −zp2

2 αp1−q1−i(z
−1
2 )
(26)

for i = q1 + 1, · · · , p1 + 1 − q1.
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3. 2-D DISCRETE REACTANCE FUNCTION

The 2-D Discrete Reactance Function (2DDRF) is defined as the
ratio of the TMIP to the TAMIP as given by

R(Z) =
M(Z)

A(Z)
(27)

where M(Z) is defined in Eq. (10) and A(Z) is defined in Eq. (12).
Note that 1/R(Z) is also a 2DDRF. The eoncept of a 2DDRF is
an extension of the one-dimensional DRF discussed in [1]. The
following new theorems are introduced and assume that D(Z) is
minimum phase.

Theorem 1: For |z1| = 1 and z2 = r2e
jω2 , we have

Re|R(Z)| is

{
< 0 for r2 < 1
= 0 for r2 = 1
> 0 for r2 > 1

, (28)

where Re() denotes the real part.
Proof: The proof is similar to Theorem 2 in [1]. Let

H(Z) =
zp1
1 zp2

2 D(Z−1)

Dm(Z)
(29)

Then, it follows that

R(Z) =
1 + H(Z)

1 − H(Z)
(30)

When |z1| = 1, H(Z) represents a stable allpass function in z2

having complex coefficients. It is known that an allpass function
in a single variable z2 = r2e

jω2 has a magnitude greater than
1 within the unit circle (r2 < 1), equal to 1 on the unit circle
(r2 = 1), and less than 1 outside the unit circle (r2 > 1). Suppose
H(Z) = a + jb when |z1| = 1 and z2 = r2e

jω2 . Then,

Re|R(Z)| =
1 − (a2 + b2)

(1 − a)2 + b2
(31)

When r2 < 1, a2 + b2 > 1 thereby establishing that Re|R(Z)| <
0. Similarly, the conditions of the theorem for r2 = 1 and r2 > 1
are established.

Theorem 2: This is similar to Theorem 1 and states that for
|z2| = 1 and z1 = r1e

jω1 , we have

Re|R(Z)| is

{
< 0 for r1 < 1
= 0 for r1 = 1
> 0 for r1 > 1

(32)

When |z1| = 1 and |z2| = 1, (1) R(Z) is complex and (2)
from the results of Theorems 1 and 2, R(Z) is a Positive Exterior
Function (PRF) [4].

Theorem 3: When |z1| = 1, R(Z) contains complex coeffi-
cients and its poles and zeros are simple, lie on the unit circle of the
z2 plane and interlace. A similar result holds when |z2| = 1. The
proof follows from the preceding discussion. When the poles and
zeros coincide, they form nonessential singularities of the second
kind [5].

A similar result has been shown for a 2-D analog reactance
function [6]. If one of the variables, say s1, is fixed on the imagi-
nary axis, the resulting analog reactance function has complex co-
efficients and its poles and zeros are simple, lie on the imaginary
axis of the s2 plane and interlace.

4. NUMERICAL EXAMPLE

An example [3] of a minimum phase polynomial is given by D(Z) =
12z2

1z2 +6z2
1 +10z1z2 +5z1 +2z2 +1. In this case, p1 = 2 and

p2 = 1. Taking q1 = 4 and q2 = 1, we get the TMIP as

M(Z) =

6∑
n=0

M2n(z2)z
n
1 (33)

where

M20(z2) = 3z2 + 6

M21(z2) = 2.5z2 + 5

M22(z2) = 0.5z2 + 1

M23(z2) = 0

M24(z2) = z2
2 + 0.5z2 = z2

2M22(z
−1
2 )

M25(z2) = 5z2
2 + 2.5z2 = z2

2M21(z
−1
2 )

M26(z2) = 6z2
2 + 3z2 = z2

2M20(z
−1
2 )

The TAMIP is given by

A(Z) =

6∑
n=0

A2n(z2)z
n
1 (34)

where

A20(z2) = −3z2 − 6

A21(z2) = −2.5z2 − 5

A22(z2) = −0.5z2 − 1

A23(z2) = 0

A24(z2) = z2
2 + 0.5z2 = −z2

2A22(z
−1
2 )

A25(z2) = 5z2
2 + 2.5z2 = −z2

2A21(z
−1
2 )

A26(z2) = 6z2
2 + 3z2 = −z2

2A20(z
−1
2 )

The TMIP and TAMIP can also be written as a linear combination
of powers of z2. The TMIP is expressed as

M(Z) =

2∑
n=0

M1n(z1)z
n
2 (35)

where

M10(z1) = z2
1 + 5z1 + 6

M11(z1) = 3z6
1 + 2.5z5

1 + 0.5z4
1 + 0.5z2

1 + 2.5z1 + 3

M12(z1) = 6z6
1 + 5z5

1 + z4
1 = z6

1M10(z
−1
1 )

The TAMIP is expressed as

A(Z) =

2∑
n=0

A1n(z1)z
n
2 (36)

where

A10(z1) = −z2
1 − 5z1 − 6

A11(z1) = 3z6
1 + 2.5z5

1 + 0.5z4
1 − 0.5z2

1 − 2.5z1 − 3

A12(z1) = 6z6
1 + 5z5

1 + z4
1 = −z6

1A10(z
−1
1 )

Figure 1 shows a plot of the interlacing poles and zeros of R(Z) in
the z1 plane when z2 = ej3π/4.
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Figure 1: Poles and zeros of R(Z) in the z1 plane when z2 =

ej3π/4. The zeros are denoted by a ©. The poles are denoted by a
∆.

5. MINIMUM PHASE CONSIDERATIONS

As mentioned earlier, (1) the theorems given above assume a min-
imum phase polynomial and (2) the TMIP and TAMIP can be
formed for any polynomial. In fact, the TMIP and TAMIP can
be used to test for minimum phase using the concept of inners
[3][7][8]. The matrix of inners, T, can be formed using the TMIP
and TAMIP written as a linear combination of powers of z1 or z2

[3]. For the example given above with the TMIP and TAMIP writ-
ten as a combination of powers of z2, T has dimension 4 as given
by

T =




A12 A11 0 A10

0 A12 A10 A11

0 M12 M10 M11

M12 M11 0 M10


 (37)

There are two inners, namely, T itself and the submatrix T1 given
by

T1 =

[
A12 A10

M12 M10

]
(38)

Two conditions for minimum phase are established since

|T|
3z12

1

= [(6z2
1 + 5z1 + 1)(6z−2

1 + 5z−1
1 + 1)]

2
(39)

and
|T1|
2z6

1

= (6z2
1 + 5z1 + 1)(6z−2

1 + 5z−1
1 + 1) (40)

(the symbol |.| denotes determinant) are both positive when |z1| =
1. The other condition is that the function of z1 corresponding to
the highest power of z2 of D(Z) should be a Schur polynomial [9]
in z1. In the example, the highest power of z2 is 1 and the corre-
sponding function, namely, 12z2

1 + 10z1 + 2 is a Schur polyno-
mial. If the TMIP and TAMIP are written as a linear combination
of powers of z1, the dimension of the matrix of inners is 8 thereby
imposing more computation.

6. SUMMARY AND CONCLUSIONS

This paper considers the generalization of two-variable mirror-
image and anti-mirror-image polynomials. It is shown that a large
number of possibilities exist and these are obtained by the de-
nominator polynomial of a 2-D transfer function whose magnitude
response remains unchanged even though the multiplying factor
zq1
1 zq2

2 is imposed. This is similar to the generalization carried out
for the 1-D case [1]. The 2-D case gives rise to a large number of
2-D discrete reactance functions (2DDRF) that are obtained from
a minimum phase 2-D polynomial. This is in contrast to the 1-D
case where only two types of 1-D discrete reactance functions are
defined such that the degree difference between the numerator and
the denominator can be either zero or one. One important property
of the 2DDRF is that for a point on the unit circle of one of the
variables, the poles and zeros of the 2DDRF are simple and inter-
lace on the unit circle in the plane of the other variable. It is also
shown that the minimum phase property of a 2-D polynomial can
be established using a matrix of inners based on the TMIP and the
TAMIP.
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