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Abstract—The method of resonant parametric perturbation is 
a simple non-feedback chaos control method which is easy to 
implement in practice. In this paper, an optimal strategy is 
applied to stabilize an unstable orbit in a chaotically operating 
current-mode controlled buck-boost converter. Optimal values 
of initial phase angles are computed corresponding to mini-
mum perturbation amplitudes. With this optimal perturbation, 
the converter operating in a chaotic regime can be controlled 
to operate in an unstable period-1 orbit that exists in the origi-
nal chaotic attractor. 

I. INTRODUCTION 
Power converters are practical nonlinear systems which 

find applications in many electronic products and equip-
ments. It has been shown that the operation of power con-
verters can easily become chaotic when they fail to maintain 
their normal periodic operation  [1]. Thus, the ability to 
avoid chaos is almost a basic feature of all existing practical 
control strategies, although practicing engineers may not 
always be aware of such a perspective. Recently many meth-
ods have been proposed for controlling chaos in nonlinear 
systems. They can be classified into two general categories 
[2], namely, feedback control methods and non-feedback 
control methods. Comparing to the feedback type of control, 
the non-feedback type of control is easier to implement, but 
it does not always lead to the stabilization of an unstable 
period-1 orbit that exists in the original chaotic attractor. 

In this paper, we consider a resonant parametric perturba-
tion method for controlling chaos in a current-mode con-
trolled buck-boost converter. With an optimal strategy, we 
achieve the same control results that can be obtained from 
the feedback type of control. Specifically we make a chaotic 
buck-boost converter operate in an unstable period-1 orbit 
that exists in the original chaotic attractor. In Section II, we 
will introduce the circuit operation of the buck-boost con-
verter under current-mode control and some typical bifurca-
tion routes. In Section III, an optimal resonant parametric 
perturbation method will be introduced, and in this applica-
tion example, we show that an unstable period-1 orbit in the 

chaotic attractor can be stabilized, as could be achieved by a 
more complicated feedback chaos control method. 

II. CURRENT-MODE CONTROLLED BUCK-BOOST 
CONVERTER 

A.  Basic Operation 
A buck-boost converter under current-mode control [3] is 

shown in Fig. 1. The switch is turned on periodically by the 
clock, and off according to the output of a comparator that 
compares the inductor current iL with a current reference Iref. 
Specifically, while the switch is on, the inductor current 
climbs up, and as it reaches Iref, the switch is turned off, 
thereby causing the inductor current to ramp down until the 
next clock comes. Thus, according to the switch state u, the 
circuit will have two topologies that can be described by the 
following differential equations: 
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where x denotes the state variables, i.e. x = [iL, vO]T, the A's 
and B's are the system matrices given by 
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Using the above equations, “exact” cycle-by-cycle simu-
lation can be performed use SIMULINK model. The parame-
ters are chosen as: E = 10 V, L = 1 mH, C = 4 µF, R = 20 Ω, 
T = 50 µs (fs = 20 kHz), Iref = 0.5 – 4.5 A. 

B. Chaotic Behavior 
The afore-described buck-boost converter has been 

shown previously to exhibit period-doubling bifurcation 
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when some parameters are varied [3]. A typical bifurcation 
diagram is shown in Fig. 2, where Iref is chosen as the bifur-
cation parameter, and the variation of the largest Lyapunov 
exponent is shown in Fig. 2(b). As shown in Fig. 2(a), the 
buck-boost converter goes through a typical period-doubling 
bifurcation route, and eventually it enters the chaotic regime 
when Iref exceeds about 1.45 A. Fig. 3 shows the phase por-
trait and Poincaré section for the case of Iref = 4 A, which 
corresponds to the chaotic operation. 
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Fig. 1: Current-mode controlled buck-boost converter. (a) Sche-
matic diagram; (b) operation waveform. 

 

  

 
     (a)                                                 (b) 

Fig. 2: Bifurcation of current-mode controlled buck-boost 
converter. (a) Simulated bifurcation diagram with Iref as the 
bifurcation parameter; (b) largest Lyapunov exponent. 

 
(a)                                          (b) 

Fig. 3: Chaotic operation of current-mode controlled buck-
boost converter. (a) phase portrait; (b) Poincaré section. 

III. CONTROL OF CHAOS IN CURRENT-MODE 
CONTROLLED BUCK-BOOST CONVERTER BY RESONANT 

PARAMETERIC PERTURBATION 

A. Review of Resonant Parametric Perturbation 
The usual procedure of resonant parametric perturbation 

is to choose a parameter that strongly affects the system’s 
dynamics and can be easily varied. Suppose this parameter is 
c, it is then perturbed with the function [1 + A sin(2πft)], 
where A « 1 and f is the perturbation frequency to be chosen. 
Effectively, we are replacing c by c[1 + Asin(2πft)] such that 
the largest Lyapunov exponent is reduced to below zero. 
This approach has been used by Lima and Pettini for stabiliz-
ing a chaotic Duffing-Holmes system [4]. In particular, it has 
been shown that when the perturbation frequency f resonates 
with the periodic driving frequency, say fs, the largest 
Lyapunov exponent will approach zero from positive, and 
eventually chaos subsides and the periodic state emerges as 
the largest Lyapunov exponent falls further below 0. 

B. Application to Buck-Boost Converter 
From Fig. 2 we can see the first bifurcation occurs at 

about Iref = 0.84 A, which corresponds to the situation of 
losing stability. For current-mode controlled buck-boost 
converter, the circuit will lose stability when duty cycle D 
exceeds 0.5. Similar to the treatment in [5], we can get the 
critical value of Iref corresponding to stable operation 
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where ξ = L /T . 

As indicated before, when Iref = 4 A, the buck-boost con-
verter operates in the chaotic regime with the largest 
Lyapunov exponent being equal to 10733. We wish to con-
trol it to operate on the (now unstable) period-1 orbit. When 
the method of resonant parametric perturbation is applied, 
we need to select the perturbing parameter. Apparently the 
current reference Iref is a convenient choice as it can be 
changed easily. Essentially we replace Iref by the perturbed 
current reference ref

~I , i.e., 

[ ])2sin(1~
refref ftAII π+=                  (4) 
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where A is the perturbation amplitude, f is the perturbation 
frequency and should be set to switching frequency fs. Thus, 
the term A sin(2πft) is the resonant perturbation applied to 
Iref. With this perturbation, the chaotic converter can be con-
trolled when amplitude A exceeds 0.076. 

C. Optimal Resonant Parametric Perburation 
In this subsection, we will describe an optimal resonant 

parametric perturbation [6] for controlling chaos in the buck-
boost converter. This method will use the smallest effective 
perturbation amplitude A, while achieving the same control 
results as that of the feedback chaos control method. In other 
words, the converter can be stabilized in the unstable period-
1 orbit that exists in the chaotic attractor with minimum 
control effort. Simply, we will replace the perturbed current 
reference (4) by: 

[ ])2sin(1~
refref θπ ++= ftAII                      (5) 

 

 
  (a)                                                   (b) 

Fig. 4: Waveforms of the chaotic buck-boost converter con-
trolled by optimal resonant parametric perturbation. (a) time-
domain waveforms; (b) phase portrait. 

 
In (5), there are two adjustable parameters, namely am-

plitude A and initial phase angle θ. Basically we find the 
optimal θ for stabilizing the unstable orbit with minimum A. 
Firstly, from simulations, we find the optimal initial phase as 
5.04 and the corresponding smallest A as 0.017; that is, when 
initial phase θ is selected as the optimal value (5.04), the 
chaotic converter can be controlled to work on the period-1 
orbit, as shown in Fig. 4. We can verify by computation that 
this orbit is exactly the unstable period-1 orbit in the chaotic 
attractor with the negative largest Lyapunov exponent equal 
to -3055. The perturbation amplifier A is 0.017, which is the 
smallest value. From the time-domain waveforms shown in 
Fig. 4(a), we can see that the point where iL touches ref

~I  is 
exactly the unperturbed current reference value (Iref = 4 A) 
and at this point the gradient of the reference current is a 
minimum. Thus, the perturbation has the least influence on 
the converter, and the same control result as the method of 
feedback can be achieved. Inspecting the waveforms in Fig. 
4(a), we can derive the relation between D and θ: 

)5.1(2)5.0(22 DD −=−−= πππθ           (6) 

Similar to the treatment described in [5], we inspect the 
inductor current iL and the perturbed current reference ref

~I , 
and get 










−=
−

−

=−

+

L
v

TD
iI

L
E

DT
iI

o

)1(

~

~

1nref

nref

                                        (7) 

where D is the duty cycle, and the perturbation style of this 
equation is:  
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Considering only the transient variables, (8) can be written as 
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or 
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where )2cos(2
~

ref
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c θππ +−=−= DAfI
dt
Id

m . 

Combining the above equations, we have the following 
iterative function: 
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where 

EDAfLIELmM cc /)2cos(2 ref θππ +−==       (12) 

For the optimal chaos control shown in Fig. 4, we have 

EAfLIEAfLIM c /2/)cos(2 refref πππ =−=       (13) 

Now using (11) we can get the eigenvalue or characteristic 
multiplier J as 
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Hence, by putting 1−=J , the critical duty cycle, at 
which the first period-doubling occurs, is obtained, i.e., 

1
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Using (3) and the above expression for Dc, we get the 
critical value of Iref for the perturbed system as: 
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When the original current reference Iref is known, we can 
derive the amplitude A and initial phase θ of the effective 
perturbation required. First, we can find the critical value of 
Mc by solving (16) for every known Iref. Second, because the 
expression of Mc does not include the duty cycle D, using 
(13), we can easily derive the critical perturbation amplitude 
A corresponding to stable operation for every known Iref. 
Then, the initial phase θ for the effective perturbation can 
also be calculated from (6) with D being obtained from (15) 
in advance. All parameters of the circuit will affect the effec-
tive values of A and θ. We have summarized in Figs. 5 and 6 
the dependence of the choice of the effective perturbation 
and optimal initial phase upon load R, input voltage E, and ξ 
= L/T. 

IV. CONCLUSION 
The method of resonant parametric perturbation is a non-

feedback chaos control method that is suitable to control 
chaos in non-autonomous systems. In this paper we have 
developed an optimal strategy of resonant parametric pertur-
bation to stabilize an unstable orbit in a chaotically operating 
switching converter, with minimal control power. 
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(a)                                                                 (b)                                                                   (c) 
 

Fig. 5: The optimal initial phase θ of perturbation needed for chaos control versus Iref. (a) with R =  12, 16, 20, 24, 28, 32 Ω; (b) with 
E = 6, 8, 10, 12, 14, 16 V; (c) with ξ = 4, 8, 12, 16, 20, 24. 

 

(a)                                                                 (b)                                                                   (c) 
Fig. 6: The perturbation amplitude A needed for chaos control versus Iref when optimal initial phase adopted. (a) with R =  12, 16, 

20, 24, 28, 32 Ω; (b) with E = 6, 8, 10, 12, 14, 16 V; (c) with ξ = 4, 8, 12, 16, 20, 24 
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