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Abstract- Lattice decoding algorithms have been shown to have 
the similar performance as the optimal maximum likelihood 
decoder for MIMO wireless systems. To reduce the high 
complexity of the lattice decoding algorithm and to achieve a 
regular fixed throughput, K-best algorithm and the 
corresponding VLSI architectures have been proposed for the 
practical implementation of the lattice decoding algorithm. In 
this paper, we propose a threshold-based K-best algorithm that 
offers significant reduction in computation and thus energy 
consumption, while still maintaining the performance. The 
method is based on the efficient pruning of the candidates in 
each dimension of the search tree. At the same time the 
throughputs of different VLSI implementations are studied 
and a high-throughput VLSI architecture is proposed. We 
show that by properly scheduling the hardware, optimal 
throughput can be achieved.  Experimental results show that 
more than 40% of the computation can be reduced when the 
threshold-based K-best algorithm is used comparing with the 
conventional K-best algorithm. Also a VLSI implementation   
based on 0.25 µm technology that can achieve a throughput of 
over 50mb/s is presented. 

I. INTRODUCTION  
In the past few years, significant amount of activities in both 

communication and VSLI research communities have been focused 
on how to obtain extraordinary spectral efficiency and achieve high-
speed wireless data transmission. In [1], it has been shown that 
multi-input multi-output (MIMO) wireless communication systems 
are capable of transmitting data at potentially very high data rates. 
However, the optimal Maximum-likelihood (ML) decoder is 
infeasible for the MIMO system, especially when a system uses a 
large number of antennas together with higher modulation 
constellations. Recently, lattice decoding algorithm has been 
proposed for MIMO systems [2]. It has been shown that the 
performance of lattice decoder is approaching that of the ML  
decoder while a lower complexity is needed. 

Two kinds of lattice decoder are proposed to achieve the ML 
Performance with lower complexity. They are the Fincke-Phost 
algorithm proposed in [2] (we denote it as SD algorithm) and the 
Schnorr-Euchner algorithm proposed in [3] (we denote it as SE 
algorithm). The lattice decoder can be interpreted as a tree search 
approach of which in the worst case the complexity is exponential. 
The complexity can be reduced with efficient pruning. The original 
depth first search decoding has the disadvantage that the 
computation requirement varies with the input signal and hence the 

decoding throughput is also varying, which is not desirable for real 
time signal detection.  

Recently, a K-Best algorithm was proposed [4]. It uses breadth-
first search instead of depth-first search. The best K candidates are 
kept at each search level. It is shown that the performance is very 
close to the optimal if K is sufficiently large. The K-Best algorithm 
requires less amount of computation as compared to the 
conventional lattice decoder and can be easily implemented in a 
pipelined fashion and has a fixed throughput.  Corresponding VLSI 
architectures for the K-best algorithm based on SD and SE 
algorithms have also been proposed [5, 6]. 

In this paper, we propose a threshold-based K-best algorithm 
that adjusts the thresholds in each dimension to reduce the searching 
space for the closest point to a region much smaller than the 
conventional K-best algorithm. This leads to a reduction in 
computation complexity and hence a lower power consumption. By 
choosing the right threshold values at each level, the performance 
degradation due to the pruning is minimized. We show that in the 
interested SNR region, more than 40% computational reduction can 
be obtained while maintaining the BER performance. At the same 
time, a VLSI architecture is proposed which employs a proper 
scheduling of the hardware It is shown that the optimal throughput 
of the K-best algorithm can be achieved by using this architecture. 

II. SYSTEM MODEL AND NOTATION  
In this paper, it is assumed that the un-coded MIMO system has 

M transmit antennas and N receive antennas. The channel is 
assumed to be a Rayleigh frequency non-selective fading channel 
and it is quasi-static. The corresponding complex-valued input and 
output relation is 

= +x Hu n
                                            (1) 

where H  is the N M×  complex channel matrix, u is the 
1M × transmitted symbol vector, x is the 1N × received vector, and 

n is the 1N × additive white Gaussian noise vector. 

As shown in [2], the complex equation is converted to its real 
representation x=Hu+n, as follows: 

( ) ( ) ( )( ) ( )
     

( ) ( ) ( )( ) ( )

      ℜ ℜ ℜℜ −ℑ      = +
 ℑ ℑ ℑ     ℑ ℜ      

x u nH H
x u nH H    (2) 

This is the Pre-Published Version 



Let 2N N= and 2M M= , then x and n are Nx1 vectors , u is a  
Mx1 vector  and H is a NxM real matrix. 

 In this paper, we assume the constellation used is 16-QAM. 
Thus for each entry ( 'u ) of u , 'u a jb= + , where ,  a b  = ±1 or 
±3. Thus, the constellation of each entry of u (i.e. the real part or the 
imaginary part of 'u ) is { 3, 1,1,3}Ω = − − .   

III. THE K-BEST SD ALGORITHM 
The optimal MIMO detection is to find a lattice point U in 

space ΩM, such that its transformed point HU, has the minimum 
Euclidean distance to a noisy observation vector X, i.e., 

2ˆ arg || ||m in
M∈Ω

=
U

U x - H U                      (3) 

Both SD decoder and SE decoder can be interpreted as a depth-
first tree search approach with pruning, while the K-best algorithm 
uses the breadth-first search instead of depth-first search and limits 
the searching scope in each dimension.  

Let p=H-1x, e=p-u and HTH=RTR, where R is an upper 
triangular matrix. Also let P̂  be the zero-forcing estimation of p, Q 
be an upper triangular matrix and Qi,i=Ri,i,

2, Qi,j=Ri,j/Ri,I, where 
i=1:M ,j=i+1:M. Equation (3) can be written as follows: 
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  The search starts from the symbol M. In each dimension only 
the paths with the accumulated partial Euclidean distance less than 
C , where C is the Euclidean distance between the received vector 
and an initial estimate which is the zero-forcing vector P̂ , will be 
kept. If the number of the paths is larger than K, then only the K-
best paths will be kept.  

  The K-best algorithm starts with the pre-calculations which  
compute the decoding order and the values of ˆ, , , , CH p P Q . 

ˆ, , ,H p P Q are calculated once for every frame and C is calculated 
for every received vector. Then the decoding algorithm is executed 
by carrying out the following steps: 

Step1. Input ˆ, , , Cp P Q , and initialize: 

K=M 

Sk=pM 

bestdist=C 

Step2. For 1, 2, , ( )i length= bestdist , where the length 
function returns the number of elements in (.), calculate:  

, ,t ku ω ω= ∀ ∈ Ω  

                        Dt=Qk,k(Si,k-ut,k)2 

                        newdistt=bestdisti - Dt 
Step3. Let T=length(bestdist)*length(Ω), sort newdistt 

(t=1,2,…,T) in descending order. The candidates whose   

tnewdist value less than 0 will be discarded since the 
accumulated partial distance up to this candidate is then greater than 
C.  Among the candidates remained, we keep the K (or T depending 
on which is smaller) best candidates. Then we adjust the u,s,e     
accordingly, and replace bestdist with newdist. 

Step4. For i=1,2,…,length(bestdist), calculate:  
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Step5. If k≠1, then go to step 2) with k=k-1; else if the first 
elements of bestdist is larger than zero, return the first row of u 
as Û , else return P̂ as Û .   

We denote the step2 as the T phase calculation, step3 as the 
sorting calculation, and step4 as the S phase calculation. 

IV. THE  THRESHOLD-BASED K-BEST ALGORITHM 
Originally, the K-best algorithm is to find the K-best paths that 

meet the following threshold at every level (k>1) and choose the 
best path at the last level (k=1). 

d8 ≤ C     

d8+d7 ≤ C 

… 

d8+d7+… d1≤ C 

Note that at the k (k>1)th level, the upper bound C is a very 
loose bound. The reason is based on the following two facts: 

1. The initial distance got from the zero-forcing is not accurate 
and always larger than the minimum Euclidean distance, especially 
when the channel condition is bad. 

2. The total Euclidean distance is the sum of the partial 
distance, which is linear with N. At the k (k>1)th level (i.e. before 
the leaf node), the accumulated sum of the distance is surely less 
than the total distance, especially for the beginning stages.  

For the K-best SD algorithm, we can modify the algorithm to 
start pruning the tree at the early levels, just like in [6] pruning the 
tree for the MLD decoding. In step 3 , instead of comparing the 
newdistt with 0, we check the candidate with  the following 
threshold value that is varying with level to see whether we should 
discard the candidate “newdistt>C-αi*i*C/8”，where i=9-k.  

The threshold value is adjusted with different levels. To 
minimize the effect on the bit-error rate, it is expected αk is 
descending. From the simulation results, we use the threshold set 
α1=[1.6,1.5,1.4,1.3,1.2,1.1,1.0,1.0]. In the extreme case, we can set 
α2=[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0], which means the partial 
distance threshold value increases linearly with the level increasing. 
For the K-best SE algorithm in [6], although the initial distance is 
empirically set from the simulation, we still can set different bounds 
at different levels.  The pruning scheme is the same as the K-best 
SD algorithm. 



We simulate the performance and the computational reduction 
of a 4-transmit and 4-receive antennas system. 1000 packets of 400 
uncoded 16-QAM symbols are transmitted with 100 symbols for 
each antenna. The average energy per symbol is fixed to 10, and the 
variance of σ2 of the AWGN is adjusted by 

2 -SNR/10
s 2=(1/2) N ( )log 10Eσ ∗ ∗ Ω ∗     (4) 

Figure 1 shows the BER performance of the algorithm. It can be 
seen that the BER of the K-best algorithm with our pruning scheme 
using the first set of coefficients is almost the same as the original 
K-best algorithm. Even if we use the second set of metric, the BER 
is only slightly degraded. This is due to the upper bound adopted by 
the original K-best algorithm is very loose. The search trees pruned 
by our scheme rarely contain the path with the smallest Euclidean 
distance. 

Figure 2 shows the reduction in computation operation. It can 
be seen that in the SNR of interests (SNR≥20dB), using our pruning 
scheme, over 40% computational reduction can be achieved. The 
pruning scheme becomes more efficiently, when the SNR is higher. 
The power consumption is proportional to the computational 
complexity. Therefore, using our pruning scheme, more than 40% 
power reduction can be achieved.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.   The performance comparison 

V. ADAPTABLE K-BEST ALGORITHM VLSI 
IMPLEMETNATION ISSUES 

  The K-best algorithms can be easily implemented in VLSI 
using the pipelined architecture. Because of the regular 
computations, it is flexible and scalable. In this section, the VLSI 
implementation issues for a 16 QAM system with 4 transmit/receive 
antennas are studied. 

At the algorithm level, some modification can be made to 
reduce the computation complexity of the K-best SD algorithm. As 
in [6], we can modify the T-phase calculation in step2 with 

2
,, ,

( )t kk kt i k
sR uD −= , where ,, ,k kt k t ku uR= . It can be 

calculated in the pre-calculations and shared in one iteration. By 
this modification, the complexity can be reduced, but it requires 
extra memory (256 bits if 16 bits resolution is used) and increases 
the workload of the preprocessing units. Considering the overhead,   
we will not use this reduction in the following analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  The computational reduction comparison  

When we re-examine the execution of the K-best algorithm, it 
can be seen that the execution involves three types of calculations: 

1) The T phase calculation in step 2: In the worst case, it 
involves 8K subtractions, 4K square operations and 4K 
multiplications. 

2) The sorting calculation in step 3. Basically, the operation is 
“compare and select“. The number of calculations is linear with K. 
In VLSI implementation, this computation can be merged with the 
T-phase calculation [5].  

3) The S phase calculation in step 4. The number of calculations 
is different from stage to stage. In the last stage (i.e. k=1), we do not 
need the S-phase calculation since the final result is obtained after 
the T-phase calculation. Therefore the largest number of 
calculations requirement is in the 7th (k=2) stage.  In the worst case, 
it involves K subtractions, 7K multiplications and 7K additions. 

One of the most important factors with the implementation is 
the throughput. When a pipelined architecture is adopted, the 
throughput is limited by the maximum clock cycles requirements in 
the T and S phase calculations. In [5], in order to save hardware, the 
T phase and S phase calculations are processed by the same 
processing element (PE) which includes one adder and one 
multiplier. The whole architecture is partitioned into 8 stages and 
each stage has it corresponding PE. In the same stage, the S phase 
calculations must wait for the T phase calculation. The maximum 
clock cycle requirement is in the 7th (k=2) stage. . In 7th stage, the S 
phase calculation requires 8K clock cycles to finish the addition and 
the subtraction. Together with 8K clock cycles required in the T 
phase calculation, the total clock cycles requirement is 16K. Thus, 
the throughput is 16/16Kt b/s, where t is the clock period. To 
improve the throughput, we can decouple the T-phase and S-phase 
calculation by adding parallel hardware.  

By adding more hardware, two adders and two multipliers for 
the T phase calculation, two adders (one of them executes the 
subtraction) and one multiplier for the S phase calculation, each 
phase of the calculation can be calculated by one processing 
element, and the whole calculation can be pipelined in the way as 
shown in Fig. 3.In this case, the maximum clock cycle requirement 
is to calculate S1,i=p1+Q1,2e2,i+…+Q1,8e8,i for i=1:K, which is at  
S2(k=2) stage and the number of clock cycles is 7K. Thus, the 
throughput is 16/7Kt b/s.  
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Figure 3.   The pipelined calculation. 

Reordering the calculation in the S phase will further reduce the 
clock cycles. In step 1, instead of just calculating Sk, (where k = 8) 
by Sk=pM, we calculate all the Si values (i from 1 to 8) with S=p. In 
step3 we adjust the values of u,s accordingly after the sorting. In 
step4 we modify the S-phase calculation by the following:  

ek,i=pk-uk,i,   Sj,i=Sj,i+Qj,kek,I    j=1:k-1 

Here in the stage k, ek,i is ready and it can be used for the partial 
calculation of Sk,i where j is from 1 to k-1. So some fo the 
computations at the later stages can be moved forward to the earlier 
stages. For K≥5, the maximum clock cycle requirement is in 
S7(k=7) stage calculation which calculates Sj,i=Sj,i+Qj,7e7,i for j=1:6 
and i=1:K and the maximum clock cycles are 6K. Thus, the 
throughput is 16/6Kt b/s. The K-best in [6] is this type of 
implementation.  

Note that the number of calculations in S phase is different from 
stage to stage. Further improvement can be achieved by properly 
scheduling the S phase calculations. By storing e8,iwe can move the 
calculation Sj,i=Sj,i+Qj,8e8,i  , for j=1:3, i=1:K, in the S8 stage to the 
S2 stage. In the same way, by storing ,k ie we can move the 
calculation Sj,i=Sj,i+Qj,kek,i , for j=1:2, i=1:K, k=6:7, in the S7 and 
S6 stages to the S3 and S4 stages, respectively. Now the maximum 
clock cycles required in the S-phase is equal to 4K. By evenly 
distributing the calculations, the optimal throughput can be obtained 
and it is equal to 16/4Kt b/s.  

Combining the new pruning scheme and the optimal scheduling 
of the S phase calculations, we propose a new K-best architecture. 
Fig. 4 gives the whole pipelined architecture. Fig. 5 shows the 
second pipelined stage. The other pipelined stages are almost the 
same, except that one multiplexer is added to the k=2, 3 and 4 
stages to execute the calculations delayed from the k=8, 7 and 6 
stages. We show the throughputs of the different implementations 
in Fig 6. We have designed the decoder for a 16-QAM system with 
4 transmit/receive antennas in a 0.25µm technology and the core 
area is 3.64mm x 3.68mm. The post-layout critical path delay of a 
PE is 10ns. The throughput shown in Fig. 6 is based on this delay 
value. From Fig. 6, it can be shown that for a given K, the 
throughput of the proposed K-best architecture outperforms the 
other K-best architectures presented in [5, 6].  

VI. CONCLUSION 
A new pruning scheme for K-best algorithm is proposed. 

Comparing with the conventional K-best algorithm, over 40% 
power reduction can be achieved. Our pruning scheme can be easily 
implemented by adding a comparator before the sorting elements to 
the conventional K-best architecture. The throughput of various 
implementations was also studied. We show that optimal 
throughput can be achieved by properly scheduling the 
computation.  
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Figure 4.  The pipilined architecture of K-best algorithm 
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Figure 5.  The second (k=7) pipelined stage of K-best 

 

 

 

 

 

 

 

Figure 6.  The  throughput of different implementations 
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