Abstract:
The background subtraction algorithm has been proven to be a very effective technique for automated video surveillance applications. In statistical approach, background m...Show MoreMetadata
Abstract:
The background subtraction algorithm has been proven to be a very effective technique for automated video surveillance applications. In statistical approach, background model is usually estimated using Gaussian model and is adaptively updated to deal with changes in dynamic scene environment. However, most algorithms update background parameters linearly. As a result, the classification results are erroneous when performing background convergence process. In this paper, we present a novel learning factor control for adaptive background subtraction algorithm. The method adaptively adjusts the rate of adaptation in background model corresponding to events in video sequence. Experimental results show the algorithm improves classification accuracy compared to other known methods.
Date of Conference: 23-26 May 2005
Date Added to IEEE Xplore: 25 July 2005
Print ISBN:0-7803-8834-8