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Abstract—This paper proposes a new method for 
adaptive beamforming using uniform concentric circular 
array (UCCA) that has nearly frequency invariant (FI) 
characteristics.  The basic principle of FI UCCA is to 
transform the received signals to the phase mode and 
compensate for the frequency dependency of the individual 
phase mode through the use of a digital beamforming 
network.  The far field pattern of the array is then 
determined by a set of weights and it is approximately 
invariant over a wide range of frequencies.  Therefore, the 
minimum variance beamforming (MVB) approach can be 
used to adapt the small set of weights, as if it is a 
narrowband array, Design examples and simulation are 
given to demonstrate the usefulness of the proposed FI 
UCCA in broadband DOA estimation and beamforming.   

I. INTRODUCTION 
Wideband beamforming using sensor arrays is an effective 

method for suppressing interference whose angles of arrival are 
different from the desired looking direction. They find 
important applications in radio communications, sonar, radar, 
and acoustics [1-3].  Traditional adaptive wideband 
beamformers usually employ tapped-delay line with adaptive 
coefficients to generate appropriate beam patterns for 
interference suppression.  This usually requires considerable 
number of adaptive coefficients resulting in rather long 
convergence time and high implementation complexity. This 
can be remedied by using subband decomposition technique, 
partial adaptation or using frequency invariant beamformers 
(FIB) [4-6,7,9].  In FIB, a beam-forming network is used to 
generate beam pattern with approximately frequency invariant 
(FI) characteristics over the frequency band of interest. They 
can attenuate broadband directional interference using an 
adaptive beamformer with very few number of adaptive filter 
coefficients [5]. One of the widely studied FIB is the uniform 
linear array (ULA) FIB [4-8]. The ULA has a linear geometry 
with equal inter-sensor spacing. Due to this geometry, its 
angular resolution at boresight is better than that at its end-fire. 
In addition, this simple array structure enables many efficient 
direction-of-arrival (DOA) detection algorithms to be obtained. 
For example, the MUSIC algorithm [10] provides a high 
resolution method for detecting the angle of arrival (AoA) of 
the signal sources based on the subspace approach.   The 
MUSIC algorithm is also applicable to DOA estimation of 
wideband coherent sources by performing the algorithm in 
beamspace using ULA-FIB [9].  Besides AoA estimation of 
wideband sources, adaptive interference suppression using 
beamspace adaptive beamforming [5] is very attractive because 
of the small number of adaptive weights required and the 
possibility of employing partial adaptation, yielding faster 
convergence and fewer number of high speed variable 
multipliers.   

Recently, electronic steerable uniform-circular arrays 
(UCAs) [1] with frequency invariant characteristics were 
studied in [14].  Beamforming networks are used to compensate 
for the frequency dependence of the array.  Unfortunately, the 
passband of a UCA is closely related to its radius and exhibit a 
bandpass characteristic.  To obtain a frequency invariant 
characteristic over a large bandwidth, the dynamic range of the 

compensation filters will become very large and it leads to 
considerable noise amplification of the array. In this paper, we 
show that this problem can be overcome if uniform concentric 
circular arrays (UCCA) are employed and develop an adaptive 
beamformer using these FIB UCCAs. The sensors in a UCCA 
are placed on concentric circles with a uniform inter-sensor 
spacing and increasing radius.  We find that UCAs with 
increasing radius will have their passbands moving towards the 
lower frequency bands.  Hence, by using ring subarrays with 
progressively larger radius in a UCCA, one can achieve a 
frequency invariant characteristic over a much larger bandwidth 
than a single UCA.  Thus, UCCA is able to form electronic 
steerable beam patterns that are relatively invariant with 
frequency over a wide bandwidth.   

Similar to the FI UCAs in [14], the basic idea of the FI 
UCCA is to transform each snapshot sampled by the array to 
the phase modes via an Inverse Discrete Fourier Transform 
(IDFT).  The transformed data is then filtered to compensate for 
the frequency dependence of the phase modes. Finally, these 
frequency invariant phase-modes are linear combined using a 
set of weights or coefficients to obtain the desired frequency 
invariant beam patterns.  These weights, which govern the far 
field pattern of the UCCA, can be designed by conventional 1D 
digital filter design techniques such as the Parks-McClellan 
algorithm to form fix beam patterns. Alternatively, these 
coefficients can be varied by an adaptive algorithm to form an 
adaptive beamformer with approximately frequency invariant 
characteristics. The compensation filters proposed in this paper 
are designed using second order cone programming (SOCP). 
Design examples show that electronic steerable beam patterns 
with approximately frequency invariant over a fairly large 
bandwidth can be obtained.  Simulation results on an adaptive 
beamformer and DOA estimation using the UCCA FIB are 
given to demonstrate its usefulness.   

The paper is organized as follows: Sections II and III are 
devoted to the principle and design of the proposed UCCA FIB. 
Design examples and simulation results of the broadband 
beamformer and DOA estimation using the proposed UCCA are 
given in Section IV.  Conclusions are drawn in Section V. 

II. UNIFORM CONCENTRIC CIRCULAR ARRAY (UCCA) 
Figure 1 shows a UCCA with P rings and each ring has Kp 

omnidirectional sensors located at }sin,cos{
pp kpkp rr φφ  

(represented as Cartesian Coordinate with the center as the 
origin) where rp is the radius of the pth ring, Pp ,,1L= , 

ppk Kk
p

/2πφ =  and 1,,0 −= pp Kk L  as shown in Figure 2. In 

UCCAs, the inter-sensor spacing in each ring is fixed at 2/λ  
where λ  is the smallest wavelength of the array to be operated 
and is denoted by sλ .  The radius of the pth ring of the UCCA is 
given by ))/sin(4/( psp Kr πλ= . (1) 

For convenience, this radius is represented as its normalized  
version ))/sin(4/(1/ˆ pspp Krr πλ == . (1a) 

Let α denote the ratio of the sampling frequency fs to the 
maximum frequency fmax ( max/ ff s=α ), the phase difference 
between the kp

th sensor and the center of the UCCA is 
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)cos(sinˆ2
pp kpk r φφθαπχ −= , and the corresponding phase 

shift is 
)cos(sinˆ

pkprj
e

φφθαω −
, where φ , and θ are the azimuth angle 

and the elevation angle respectively, as shown in figure 3. 
Hence, the steering vector [1] of the pth ring of a UCCA is: 

][
)cos(sinˆ)cos(sinˆ)cos(sinˆ 110 −−−−= pKppp rjrjrj eee

φφθαωφφθαωφφθαω
Ls . (2) 

The azimuth angle φ  is on the horizontal plane where the 
sensors are situated. It measures from a reference imaginary 
axis on this horizontal plane, while the elevation angle θ  is 
measured from a reference imaginary axis perpendicular to the 
horizontal plane. Without loss of generality, our design will be 
focused at an elevation angle of 2/πθ = , i.e. the horizontal 
plane. 

III. DIGITAL BROADBAND UCCA FIB 
Figure 4 shows the structure of the broadband FIB for the 

pth ring of a UCCA. After appropriate down-converting, 
lowpass filtering and sampling, the sampled signals from the 
antennas are given by the vector 

T
Kp nxnxnxn

p
]][][][[][ 110 −= LX , which is called a snapshot 

at sampling instance n. This snapshot is IDFT transformed to 
the phase-mode and the transformed snapshot is denoted by 

][][ nn pKMp pp
XWV ⋅= , where 

pp KMW  is an Mp by Kp IDFT 

matrix with ppp
pppp

Kkmj
kmKM e /2

,][ π=W   

and 
[ ] ∑

−

=
==

1

0

2

][][][
p

p

pK
pmpk

ppp

K

k

j

kmmp enxnvn
π

V . 
(3) 

Here, nm,][A  denotes the (mxn) entry of matrix A.  We assume 

that Mp is an odd number and define 2/)1( −= pp ML .  Each 

branch of the IDFT output is then filtered by )(ω
pmH  (to 

compensate for the frequency dependency as we shall see later 
in this section), multiplied with 

pmg  before combining to give 

the beamformer output ][nyp :  
 ( )∑

−=

⋅∗=
p

pp
ppp

L

Lm
mmmp gnhnvny ][][][ , 

(4) 

where * denotes discrete-time convolution.  To obtain the 
spatial-temporal transfer function of the beamformer, let us 
assume that there is only one source signal s(n) with spectrum 

)(ωS .  Taking the Discrete Time Fourier Transform (DTFT) of 
equation (3), one gets 
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  (5a) 
Taking DTFT on both size of equation (4) and using (5a), we 
have 

∑
−=

=
p

pp
ppp

L

Lm
mmmp HVgY )()()( ωωω  

∑ ∑
−=

−

=

−











=

p

pp

p

p

p

pK
pmpk

pkp

p

L

Lm
m

K

k

jrj
m HeegS )()(   

1

0

)cos(ˆ
2

ωω
π

φφαω  
(5b) 

Hence, the spatial-temporal response of the pth ring is 
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To obtain a frequency invariant response, the term inside the 
bracket should be independent of the frequency variable ω .  
First of all, using the expansion [13], 
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where )(βnJ  is the Bessel function of the first kind, (6) can be 
rewritten as 
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Further, the term inside the bracket is evaluated to be 
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Substituting (9) into (8) gives 
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From [13], the Bessel function has the following property 
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Therefore, for sufficiently large value of n , the value of the 
Bessel function will be negligibly small.  In other words, if the 
number of sensors is large enough, ),( φωpG  can be 
approximated by 
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It can be seen that for a given radius pr , the bandwidth of the 
array, without compensation, is determined by the term 

)ˆ( αω pm rJ
p

.  Rings with small radi usually have better high 

frequency response and vice versa.  Therefore, to obtain a FI 
with large bandwidth, small responses of )ˆ( αω pm rJ

p
 at certain 

frequencies have to be compensated by )(ω
pmH .  This is 

undesirable in general because it leads to considerable noise 
amplification.  Fortunately, by employing more rings in a 
UCCA, a wider bandwidth can be obtained.  

In a UCCA FIB, the outer rings have more phase modes 
than the inner ones. Let the weighting vectors of the rings be 
identical, i.e. Pggg === L21 , where T

LLp PP
ggg ][ L−= .  

The overall response of the beamformer can be written as: 
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where for notation convenience, we write )(ωp
mH  as )(ω

pmH . 

If the filters )(ωp
mH are designed such that 

1)]()ˆ([
1

≈∑
=

P

p

p
mpm

m
p HrJjK ωαω  for ],[ UL ωωω ∈ , (14) 

where Lω  and Uω  are respectively the lower and upper 
frequencies of interest, then the beamformer in (13) will be 
approximately frequency invariant within ],[ UL ωωω ∈  and 

∑
−=

≈
P

P

L
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(15) 

Furthermore, its far field pattern is now governed by the 
spatial weighting }{ mg  alone.  Since the right hand side of (14) 

is a linear function of the filter coefficients in )(ωp
mH ’s, the 

design problem in (14) can be treated as a filter design problem 
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with all the filter outputs adding up to a desire response of value 
1.  If the minimax error criterion is used, the filter coefficients 
for )(ωp

mH  can be determined by second order programming 
(SOCP) [15].  It can also be seen from (15) that the far field 
spatial response is similar to that of a digital FIR filter with 
impulse response }{ mg . Therefore, )(φG  can be designed by 
conventional filter design algorithms such as the Parks-
McClellan algorithm or SOCP if convex quadratic constraints 
are to be imposed. In addition, angular shifted versions of (15) 
can be derived by modulating }{ mg  with sinusoids at 
appropriate frequencies. For example, if the shift is 2/π , then 

the modulation is }{ 2 mje
π

, PP LLm ,...,−= .  In example 1 to be 
described in Section IV, this property is used to generate a set 
of broadband beamformers uniformly spaced in the angular 
domain.  Using a similar technique as in [9], DOA of broadband 
coherent signals can be estimated satisfactorily.  

Real-time adaptation of the beam pattern through the 
spatial weighting }{ mg  to suppress undesired interference is 
also feasible.  Since only a small set of coefficients }{ mg  is 
involved, it has the potential to yield faster convergence speed 
than traditional broadband adaptive array using tapped delay 
lines.  Here, we shall present a broadband adaptive UCCA FI 
beamformer using the minimum variance beamformer (MVB) 
concept [16].   Suppose that the DOA of the desired signal has 
been determined.  The beamformer weight  

T
LL pp

gg ],....,[ −=w  can be determined by minimizing the 

output energy of the beamformer output, subject to the 
constraints that the signal in the direction has a gain equal to 
one.  This yields the following problem for the optimal weight 
vector: 

 minimize  wRw y
*  

subject to  1)(* =dθaw , 

(16) 

where  Ry )()( *
1 nnNn

n yy=
=Σ=  is the estimation of the covariance 

matrix of the received signal vector )(ny  and n
d C∈)(θa  is the 

array manifold on the desired angle. The analytical solution to 
this optimization problem is: 

 ))()(/()( 1*1
dyddymv θθθ aRaaRw −−= . (17) 

This is possible because the frequency characteristics of the 
array has been compensated by the FIB.  We now consider 
some design examples.  

IV.  DESIGN EXAMPLES 

Example 1: DOA estimation using UCCA beamformers. 
In this example, the UCCA beamformer is used to find the 

DOAs of two arrivingt signals at o35 and o45 .  The first signal 
is composed of 33 sinusoidal signals with frequencies ranging 
from 8108.0 ×  to 8104×  at an interval of 8101.0 ×  Hz. The 
other signal is also a sequence of sinusoidal signals with 
frequencies ranging from 81083.0 × to 8103.4 ×  and the 
sampling rate α  is set to 2.  The ratio of the first signal to the 
second one is -21.16dB. The UCCA consists of two rings. The 
inner ring and the outer ring have 10 and 18 omni-directional 
sensors, respectively. The required bandwidth of the UCCA-
FIB is ]65.0,2.0[ ππω∈ . The numbers of phase modes M are 
respectively 9 and 17. We choose the central 9 spatial filter 
coefficients (phase mode) out of the 17 to shape the spatial 
response of the UCCA FIB.  The desired beam is targeted at 

o60 and the beamwidth is o10 . }{ mg  are obtained from the 
Parks-McClellan algorithm according to the given  specification 

with same passband and stopband ripples. The frequency 
responses are shown in figures 5 and 6. For convenience, the 
frequency responses of the UCCA-FIB for ]65.0,2.0[ ππω∈  
are overlapped together in figure 5 to illustrate the frequency 
invariant property of the beamformer. The frequency spectrum 
is approximately FI, with deep nulls formed at the desired 
position over the bandwidth of interest. Figure 6 shows the 
perspective view of the beamformer. Other beamformers are 
obtained by shifting the basic beamformer’s response equally in 
the angular domain. The SNR of the first signal and the 
background noise is 29dB and the number of arrays used in the 
beamspace is 9. The DOA estimation method used is the beam-
space MUSIC method in [9], which was originally designed for 
FIB ULA. Figure 8 shows the MUSIC spectrum obtained in dB 
and the estimated angles are found to be 35.01o and 45.22o, 
which are very close to the true values. 

Example 2: Beamforming using UCCA beamformer. 
An adaptive MVDR beamformer is obtained by the 

method in Section III using the same UCCA and signal model 
of example 1. The first signal is assumed to be the desired 
signal, while the second one is considered as the interference. 
The desired signal, interference signal and beamformer output 
in frequency domain are plotted in Figure 8 as real, dashed and 
dotted lines, respectively. From the figure, we can see that the 
interference signal is considerably suppressed and the desired 
signal is well preserved (The performance in the frequency 
range ]65.0,3.0[ ππ  is similar to the one in figure 8 and is 
omitted here for clarity). 

V.  CONCLUSION 
A new broadband adaptive beamformer using a new uniform 
concentric circular array (UCCA) with frequency invariant 
characteristics is presented. By compensating the frequency 
dependency of individual phase modes of a UCCA using a 
digital beamforming network, an electronically steerable UCCA 
with nearly frequency invariant (FI) characteristics is obtained.   
The far field pattern of the array is determined by a set of 
weights and it is approximately invariant over a wide range of 
frequencies. The minimum variance beamforming (MVB) 
approach is used to adapt the small set of weights, as if it is a 
narrowband array, Design examples and simulation are given to 
demonstrate the usefulness of the proposed FI UCCA in 
broadband DOA estimation and beamforming.   
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Figure 1. A UCCA with P rings and Kp-sensor at each ring. 
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Figure 2. Relationship between inter-sensor spacing and the radius of 

the pth ring of the UCCA. 
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Figure 3. Geometry of the reference imaginary frame. 
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Figure 4. UCCA-FIB block diagram for the pth ring. 

-150 -100 -50 0 50 100 150
-60

-50

-40

-30

-20

-10

0

Angle in (Deg.)

S
to

pb
an

d 
A

tte
nu

at
io

n 
(d

B
)

Normalized spatial response of the UCCA-FIB

 
Figure 5. Spatial response of the UCCA-FIB. 

 

 
Figure 6. Spatial response and frequency response of the UCCA-FIB. 
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Figure 7. DOA estimation of two noncoherent sources based on the 

UCCA-FIB. 
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Figure 8.  Adaptive beamforming using the UCCA-FIB: (red) 

beamforer output, (blue) interference signal, (black) desired signal in 
frequency domain. 
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