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A Low-Power Visual-Horizon Estimation Chip
Timothy K. Horiuchi, Member, IEEE

Abstract—Recent successes in the construction of micro aerial
vehicles ( 15 cm) have highlighted the lack of real-time sensors
for flight control. This paper describes a low-power real-time vi-
sual-horizon sensor for stabilizing the pitch and roll of miniature
aircraft in moderate-to-high-altitude flight. This prototype sensor
uses a 12 12 photoreceptor array to find a best-fit horizon line
based on image intensity. The sensor includes a “confidence-level”
output for signaling poor sensing conditions and can scan out the
image. The chip was fabricated in a commercially available 0.5- m
CMOS process and operates on less than 2.5 mW with a 5-V power
supply.

Index Terms—Analog VLSI, autonomous flight control, micro
aerial vehicles, perceptron, smart sensor.

I. INTRODUCTION

U NMANNED micro aerial vehicles are rapidly being de-
veloped for use as a low-cost portable aerial surveillance

platform for semiautonomous operation. While they are suc-
cessfully achieving flight, the sensors needed for autonomous
flight (in contrast to long-range navigation) are lacking. Ob-
stacle avoidance and the control of basic flight parameters such
as altitude, roll, and pitch remain a problem for such small ve-
hicles with tiny weight and power budgets. Their small size
makes them particularly susceptible to tiny wind gusts, making
the speed of processing critical for stability.

While many visual-motion approaches to stabilizing aerial
vehicles with low-power custom vision chips and systems are
in development (e.g., [1]–[6]), these approaches do not provide
information about the pitch or roll angle directly. Accelerom-
eters can be used for pitch and roll rates but typically suffer
errors in low-amplitude regimes and high-frequency vibration
environments and cannot give estimates of altitude. For these
reasons, real-time detection of the visual horizon may be desir-
able for the stabilization of pitch and roll of micro aerial vehi-
cles at medium-to-high altitude where the horizon is likely to be
the true horizon and not the shadow of a mountain or building
(Fig. 1). The direct measurement of the pitch and roll angle
can be used to control banking turns in flight, control altitude
changes, or stabilize the aircraft against low-frequency pertur-
bations or drift.

Several low-sensor-count horizon sensing systems have been
developed for assisting model aircraft pilots that utilize contrast
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Fig. 1. Visual-horizon detection from relatively high altitude can provide valu-
able sensory data for flight stabilization of micro aerial vehicles, from early
dawn to well after dusk.

in the infrared spectrum [7] or visible light [8]; however, these
do not provide indications of poor sensing conditions.

In recent years, a team from the University of Florida
(UF), Gainesville, has demonstrated an automatic vi-
sual-horizon-finding algorithm operating on a high-speed
computer on the ground that receives a transmitted color
video feed from the airplane [9]. In this algorithm, a search
is conducted to find a horizon line that best splits the image
into two regions (sky and ground) whose pixels are “most like
each other.” The pixels within each region form a cluster point
in three dimensions (red–green–blue or RGB) with a certain
mean and variance. By finding the line that minimizes the
variance for both clusters, a good horizon solution is found.
This approach obviously depends upon the assumption that the
sky and ground are mostly different in color. In their imple-
mentation, a coarse-to-fine search of the entire parameter space
was conducted on each frame of the video. The closed-loop
system performance was demonstrated to be more stable than
when a trained operator viewed the video feed.

Although the UF algorithm used a broad parameter search to
find the horizon anew in each video frame (to avoid problems
with video transmission dropouts), we developed a similar al-
gorithm that uses a gradient-descent optimization approach em-
bedded in an continuous-time analog VLSI vision chip to find
the best estimate of the visual horizon while providing a mea-
sure of confidence signal. The VLSI implementation has the po-
tential for real-time low-power performance and operation over
a very wide dynamic range of image intensities.

II. HORIZON DETECTION ALGORITHM

A. Horizon Vector

Consider an image where each pixel is assigned a horizontal
and vertical coordinate with the origin in the center of the
image [Fig. 2 (left)]. We can think of this coordinate as the pixel
vector , where is the index. We introduce the horizon vector
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(a) (b)

Fig. 2. (a) The sign of the dot product of the horizon vector ��� with the pixel
vector ��� plus a bias parameter determines the horizon line. The dotted line rep-
resents the horizon line with a positive bias. (b) Block diagram of the processing
that occurs in a single pixel. ��, ��, and �� represent the ��� components and
bias parameter of the horizon vector, and each pixel’s coordinate ��� �� is rep-
resented by currents encoded by the voltages�� and ��. Vsky and Vgnd repre-
sent the average intensities of pixels within the selected sky and ground regions,
respectively.

and define the horizon as the boundary separating the two
polarities (or “classes”) resulting from the dot product between
pixel vectors and the horizon vector (plus a bias parameter and
a fixed threshold )

(1)

The two classes represent “sky” and “ground.” In the horizon
detection algorithm to follow, exactly which class represents sky
or ground will not be specified but can easily be determined after
the horizon is found by measuring the average image intensity
of the sky and ground classes. The horizon line is thus perpen-
dicular to the horizon vector and is offset from the origin by
a distance that is dependent on the horizon vector magnitude,
the threshold, and the “bias” parameter . The horizon vector
information is available at each pixel location, and the class as-
signment is computed in parallel at each pixel.

The goal of finding a visual horizon line requires a working
definition of the differences between “sky” and “ground.” We
use an approach that is similar to that of the UF team [9], noting
that a histogram of pixel intensities (in their case, the RGB
vector) will, in most cases, show a bimodal distribution with
the sky pixels that are bright and the ground pixels that are dark.
This is obviously not always true and depends on the particular
wavelengths used but describes most situations adequately. The
goal is to find the line in the image that best separates the two
intensity distributions.

With the horizon vector in some initial state, we begin by
computing the average intensity of each class for the current
state of the horizon line. At each pixel, the absolute differences
between the pixel’s intensity and the class intensity averages are
computed. We decide that a pixel is “misclassified” if the pixel
intensity is closer in value to the opposite class average. The goal
of the horizon detection algorithm is to find the horizon vector
that minimizes the total number of misclassified pixels. For any
realistic image, the horizon will never be perfectly straight due
to trees, buildings, canyons, mountains, or lens distortions; by
monitoring the total number of misclassified pixels, however,
we will have an ongoing estimate of the success or failure to fit
a straight line. We may additionally have portions of the image

where pixels appear to be misclassified due to their intensity
(e.g., bright spots on the ground and dark objects in the sky).

The horizon-line calculation operates as a linear discrimi-
nant function over a 2-D input space (i.e., the image). By uti-
lizing well-known neural-network learning algorithms, we can
achieve adaptation of the horizon vector to minimize the total
number of misclassified pixels.

B. Finding the Best Horizon Vector

In neural-network training, example inputs (pixel vectors)
are presented one by one, and the resulting output is compared
against a desired output (class match or mismatch). The linear
discriminant (horizon) is then moved to minimize a quadratic
cost function. In the horizon detection problem, the image rep-
resents the distribution to learn, and all of the input examples are
presented simultaneously. As our image moves and changes, the
horizon vector must quickly adapt to continuously minimize the
cost function.

If, instead of , we use some sigmoidal activation func-
tion (whose range is 0–1, with ), each pixel output
class can described by

(2)

If represents the desired class output (0 or 1) for a given pixel,
we can define a cost function

(3)

and solve for an update rule for each component of the horizon
vector

(4)

(5)

where is the learning rate and

(6)

Since will always be positive and represents the
sign and degree of the mismatch, we approximate this by setting

equal to , keeping our effective step size small
to avoid overestimating . The learning rate must be kept
small to avoid large oscillations around the solution but must be
large enough to find solutions rapidly.

The equations ultimately result in the following. When a pixel
determines that it is misclassified as a ground (or sky) pixel,
it adds (or subtracts) its own coordinate vector to (or from)
the horizon vector, thus rotating the horizon vector slightly. In
this way, both the direction and the amplitude of the vector
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Fig. 3. Example effects of the learning rule. Consider a horizon vector ��� that
splits the image into sky (above the horizontal line) and ground regions. When
a pixel is found to be misclassified, there are two possible effects on the horizon
vector. In the case of a ground pixel found in the sky region, a tiny fraction
(exaggerated in the figure) of the ground pixel vector is subtracted from the
horizon vector, but in the case of a sky pixel found in the ground region, a tiny
fraction of the sky pixel vector is added to the horizon vector. The resulting
vector (gray vector) is closer to properly classifying both pixels.

Fig. 4. MATLAB simulation: Two example frames from a movie sequence and
the corresponding estimate of the horizon. The movie frames were captured with
a digital camera.

are changed (see Fig. 3). Because all pixels perform this op-
eration simultaneously, the change in the horizon vector will
be a large vector sum of adaptation vectors. Notice that pixels
near the center with tiny vector amplitudes do not have the same
weighting as those pixels in the periphery.

The bias variable modification rule operates independently
from the rotation and simply increases or decreases the bias pa-
rameter (i.e., translates the horizon) to balance the number of
misclassified pixels on either side of the horizon line. Thus

(7)

where is the bias learning rate. Notice that, with a nonzero
threshold , increasing the horizon vector length has the same
effect as increasing the bias.

This algorithm was simulated on several different movie se-
quences captured from the top of a building to simulate a micro
aerial vehicle in an urban setting. Following the presentation of
each new movie frame, the differential equations were allowed
to iterate ten times to create the new estimate of the horizon. A
steady-state solution was typically found within four to five it-
erations (Fig. 4).

In many of these simulations, bright sidewalks or reflections
of the sky saturated the digital camera to the same intensity value

as the sky, producing a skew in the final horizon solution. In
the final chip implementation, however, since we are directly
imaging the scene with photodiodes and representing image in-
tensity in the current domain, the sky will typically be measured
to be orders of magnitude brighter than the bright sidewalk.

C. Analog VLSI Considerations

The primary motivation for analog VLSI implementation is to
achieve real-time performance using very low power. Although
analog VLSI implementations typically suffer from transistor
mismatch, much of this algorithm works through averaging,
minimizing the impact of individual pixel mismatch. Real out-
door scenes contain intensities spanning many orders of mag-
nitude that can commonly overload standard imagers. On this
chip, image intensity is represented in the current domain, al-
lowing for many orders of magnitude of image intensity. This
can be important since the sky can often be significantly brighter
than bright objects on the ground, a situation where conventional
imagers would report similar saturated values.

Various practical reasons make it desirable to prevent un-
bounded growth or shrinkage of the horizon vector amplitude.
Large vectors represented by voltages can exceed the dynamic
range of a given circuit, while very small vectors can produce
outputs close to the computational noise level (i.e., discretiza-
tion noise, electronic noise, and transistor mismatch). We have
introduced the bias term that allows off-origin horizon lines
while keeping the horizon vector magnitude (and, thus, its com-
ponent voltages) within a desirable range of voltages.

A sophisticated sensor usually needs a method for deter-
mining if the conditions for accurate measurement are present.
In our application, the sensor does not know a priori if the
aircraft is looking straight down at the ground or flying at low
altitudes where objects may interfere with perception of the
horizon. In our algorithm, the total number of misclassified
pixels and the average intensities of the two classes can provide
an indication of the inability to find a good horizon line or the
presence of low-contrast conditions.

III. CIRCUITS

The horizon detection sensor and algorithm were imple-
mented in analog CMOS circuitry, with its transistors operating
primarily in the subthreshold region of operation. The measured
horizon vector (with bias) is represented by three voltages, and
the “total-mismatch” confidence-level measure is reported as a
current.

A. System Block Diagram

The horizon detection chip consists of a 12 12 array of
pixels, each with a photodiode (approximately 406 m ) and
horizon detection circuitry [see Fig. 2 (right panel)]. The photo-
diode current and the computed class assignment for each pixel
can be scanned out to produce images. The 2-D array is orga-
nized into four quadrants with slightly different cell layouts to
allow the use of simpler two-quadrant computational circuits. In
the sections to follow, only quadrant-1 (i.e., and )
circuits will be shown. For other quadrants where either the or

components are negative, the signal voltage (i.e., or ) and
signals are reversed on the differential pair inputs. Along
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Fig. 5. Quadrant-1 class detector circuit. Pixel coordinates are given by �� and ��, while the horizon vector is given by ��, ��, and ��. ( ��� values are given
in micrometers: �� ���� � �	���	�; M17 and ��� � �	���	�).

(a) (b)

Fig. 6. (a) Average class intensities are computed, and the difference between the local pixel intensity and the two average class intensities is represented as the
currents � �	
��
���� and � ����
����. ( ��� values are given in micrometers: M1, M2, M4, M5, M9, ��� � �	���	�; M3, M6–M8, M10, ��� � �	���	�)
(b) Absolute-value difference currents are compared to determine if a pixel has been misclassified. ( ��� values are given in micrometers: M5, M6, M1, �� �

�	���	�; M3, �� � �	���	�).

the margins of the array, current sources that are proportional to
the magnitude and (representing the - coordinates of
each pixel) are mirrored into each pixel via the voltages and

, respectively (circuit not shown). The parameter is a global
constant that sets the effective gain of in shifting the horizon
away from the origin.

B. Class Detector

The circuit schematic for the quadrant-1 class detector
(“class” block in Fig. 2) is shown in Fig. 5. Each of the three
voltages, namely, , , and , is referenced to the voltage

allowing negative values. The differential pair currents
are summed and compared to a current threshold defined by
the voltage parameter . This represents the dot product
of the pixel vector and the horizon vector compared to the
threshold . The resulting digital signal is buffered, and a com-
plementary signal is generated. For other quadrants, negative
coordinates are implemented by swapping the output connec-
tions of the differential pairs. All pixel class outputs will thus
be classified logically as either or .

C. Mismatch Detector

The two subcircuits of the mismatch detector (“mismatch”
block in Fig. 2) are shown in Fig. 6. The class assignment (sig-
nals and ) of each pixel in the image (generated by
the circuit in Fig. 5) is used to compute the average image inten-
sity of each class. Each pixel makes multiple copies of the local
photocurrent ( from the photodiode, block P in Fig. 2)
via transistor M7 to transistors M3, M6, and M8. The copy from
M6 is merged with other photocurrents within its class via the
transistor switches (either M5 or M4) and is subsequently av-
eraged by all of the M1 transistors in the dynamically linked
class. The class average current is thus mirrored to M2 and is
compared to the local photocurrent.

The difference current between the local intensity and the
class average is output on the line labeled, namely, .
The difference current between the local intensity and the other
class average is output on the line labeled, namely, .
The difference currents are then compared to each other [see
Fig. 6(b)] to determine if the pixel was misclassified. Since
the difference currents can be either positive or negative, abso-
lute-value circuits are employed. The parameter should
be set approximately one threshold voltage below Vdd, and
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Fig. 7. Quadrant-1 horizon vector adaptation circuit (all transistors have a
��� � �������, given in micrometers). The series transistors M19 and
M20 sink a fixed current from ���� when the pixel is indicating a mismatch
condition.

should be set approximately one threshold voltage above
ground.

D. Horizon Vector Learning

The circuit schematic for the quadrant-1 adaptation circuit
(“adapt” block in Fig. 2) is shown in Fig. 7. If is
high, indicating a class mismatch, a current that is proportional
to the pixel coordinate is either added or subtracted directly onto
or from the and lines. For adapting the bias value, a fixed
current, defined by , is either added or subtracted di-
rectly onto or from the line, moving the horizon line to change
the pixel class. External and parasitic capacitances integrate the
summed currents from all the pixels to produce changes in ,

, and . For other quadrants, negative coordinates are rep-
resented by swapping the and connections in the
differential pair.

E. Confidence Measures and Chip Outputs

The main outputs of the chip are the voltages , , and
and the total mismatch current drawn from the line (see
Fig. 7, M19 and M20) that indicates confidence level. Along
the edges of the array, addressing scanners allow access to
the photocurrent and the selected class at each pixel. In addition,
there are two current outputs derived from and
(see Fig. 6) that mirror the average photocurrent measured in
the “sky” and “ground” classes. These two currents are impor-
tant for distinguishing (off-chip) if the sky class contains the
brighter pixels compared to the ground class. Inversion of these
two classes is not important for finding a good horizon line; it
is important, however, for interpreting if the aircraft is upside
down or right-side up.

F. Diamond Constraint Circuit

To encode horizon lines that do not pass through the origin, ei-
ther the horizon vector magnitude (i.e., and values) or the
bias (i.e., ) can be scaled while leaving and unchanged.
Because the effect is equivalent, the vector adaptation circuit
does not bias the solution to any particular combination of vector

magnitude and bias. The class detector circuit, however, oper-
ates in its linear regime only when and are within about
100 mV of . For this reason, we have added another cir-
cuit that normalizes the horizon vector to a range of acceptable
values and a term to our error function (8) that minimizes the
difference between the horizon vector magnitude and a refer-
ence magnitude. While a constant magnitude vector ( -norm)
would be a natural choice (i.e., the vector lies on a unit circle),
we have chosen the -norm (i.e., the vector lies on a diamond)
for circuit simplicity

(8)

(9)

Although the derivative of the new error function (9) shows a
magnitude correction term that is independent of the magnitude
of (due to the choice of the -norm), it is desirable to change
the magnitude of the horizon vector without modification of the
direction of . To accomplish this, we modify the horizon com-
ponent correction to include the magnitude of , making the
direction of the magnitude correction along the horizon vector

(10)

We have designed a circuit (Fig. 8) that sources and sinks cur-
rent on the and lines to increase or decrease the vector
magnitude in proportion to the and components, respec-
tively. This simple circuit drives the sum of the vector compo-
nents to a constant (i.e., the horizon vector settles onto a dia-
mond-shaped curve). First, the -norm is calculated at the top
of the circuit (M1–M16)

(11)

The is the sum of four small dc currents induced by the
transistor pairs M11–M12 and M14–M15 and their mirror cur-
rents in the two absolute-value circuits controlled by . This dc
current is unavoidable in this absolute-value circuit, but it is ulti-
mately negated by an adjustment in . is the transconduc-
tance of the two differential amplifiers controlled by .
The drain voltage of M17 indicates whether the
vector is larger or smaller than the reference magnitude and
“switches” currents that are proportional to and onto the

and lines. A lower reference voltage is chosen for
the signal to properly steer the current in the lower
differential pair

(12)

(13)

where is set to be the sum of and the magnitude
reference current defined by the bias voltage (i.e., drain
current in M17) and is the transconductance of the lower two
differential pairs controlled by . To reduce offset er-
rors that might occur when the constraint error is close to zero
and is not in one of the two extremes (i.e., Vdd or
Gnd), the adaptation current is reduced by a “bump” circuit [10]
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Fig. 8. Diamond constraint circuit. The horizon vector components �� and �� are converted to currents � and � that are the absolute values of the
vector components. The components are summed and compared against a current reference defined by M17 and the bias voltage ����. The resulting voltage
signal determines whether the magnitude should be increased or decreased. The lower two circuits determine the correct direction of the adaptation current that
depends on the sign of each component.

(a) (b)

Fig. 9. (a) Die photograph of the horizon chip with an array of 12� 12 pixels
(the holes in metal 3 are visible). (b) Layout of the quadrant-1 pixel with (green
square) the photodiode visible at the bottom right. In this view, the metal-3 layer
is hidden to allow a clear view of the design.

(M37/M38 and M24/M25). It should be noted that there is only
one instance of this diamond constraint circuit on the chip.

IV. TEST RESULTS

A. Horizon Estimator

The chip was fabricated in a commercially available 0.5- m
two-poly three-metal CMOS process using the top metal layer
as a light shield with holes over the photodiodes (Fig. 9). This
process had an nFET threshold voltage estimated at 0.75 V and
a pFET threshold voltage estimated at 0.96 V. The param-
eter voltages used for the test results in this paper are given in

TABLE I
TYPICAL PARAMETER VALUES

TABLE II
CHIP CHARACTERISTICS

Table I. Images were projected directly onto the chip through a
lens mounted on the chip packaging. An overview of the chip
characteristics can be found in Table II. The layout graphics for a
single pixel (without the metal-3 layer) is shown in Fig. 9(b). For
testing purposes, the photocurrent and selected class for each
pixel were scanned off using a current-sense amplifier. An ex-
ample is shown in the top two panels of Fig. 11. The transistor
mismatch in the class determination circuit produces a ragged,
but clearly discernible, horizon boundary [Fig. 11 (top-right
panel)].
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Fig. 10. (Top row) Four example photodiode images and (bottom row) externally offset/gain-corrected versions. Corrections were primarily gain errors.

Fig. 11. Time evolution of the horizon estimate (computer-in-the-loop testing).
Top left: Static image with nonzero roll and pitch angles. Top right: Final sky/
ground class image. Bottom left: Horizon vector endpoints during iteration (the
line circle is the final iteration). Bottom right: Total mismatch current during the
evolution of the horizon estimate.

Example images from the photodiode array are shown in
Fig. 10. Although not designed to be an imaging device, the
chip can still be used in this manner.

To observe the adaptation process during testing, the , ,
and voltages were held externally by computer-controlled
digital-to-analog converters, while the total vector adaptation
currents on these lines were measured. After reading the photo-
diode image and class image, the horizon vector voltages were
iteratively changed in proportion to the measured adaptation
current, simulating the time evolution of the , , and volt-
ages if they had been left floating or connected to external ca-
pacitors.

Fig. 11 shows an example image where the horizon vector
was initially pointing toward the bottom-left corner, producing

an incorrect horizon line [Fig. 11, bottom-left panel]. Initial it-
erations show a rapid rotation of the horizon vector toward the
bottom-right corner, followed by a slow magnitude lengthening.
The total mismatch current [Fig. 11, bottom-right panel] that
reflects the number of mismatched pixels rapidly decreases, re-
sulting in a stable solution. This final mismatch current is typical
for good horizon solutions with the particular parameter settings
used. Because this current represents the number of mismatched
pixels, this current should be monitored by any system using the
sensor’s output to evaluate the confidence level of the sensor
output.

We then allowed the horizon vector and bias value to freely
adapt to produce rapid horizon solutions. Three example images
with the resulting class separations are shown in Fig. 12. Ex-
ternal 0.022- capacitors were attached to the , , and
lines for stability, creating a time constant of about 20 ms. The
time for settling is dependent on the setting of the adaptation
circuits ( and the baseline currents for the coordinates,
namely, and ).

The roll-angle estimation accuracy is shown in Fig. 13, where
horizon images were presented to the chip and the resulting
horizon vector was transformed into an angle using

(14)

Using the maximum standard deviation observed (0.0453
rad), we conservatively estimate the angular resolution to be
2.6 out of the possible 360 of rotation.

In this system, pitch corresponds to the shift of the horizon
line away from the origin along the direction of the horizon
vector. This is possible due to the threshold and the bias
(2). Because the magnitude of the horizon vector is not tightly
regulated to be constant, pitch is calculated (off-chip) using the
following:

(15)

where represents the transconductance of the differential
pair for (see Fig. 5) and denotes the transformation of the
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Fig. 12. Three example snapshots of internal state following horizon detection for different roll and pitch angles. Top row: Test images as seen by the photodiode
array. Bottom row: Sky/ground class image following settling.

Fig. 13. Measured horizon-line roll angle versus actual horizon roll angle.
Error bars represent one standard deviation from 25 measurements.

voltage into the threshold current. Notice that if the
horizon vector were normalized, pitch would just be propor-
tional to minus a constant. Unlike the roll angle,
however, this calculation is highly dependent on parameters
and device characteristics (e.g., , transistor threshold voltage,
choice of lens, etc.) and will need to be mapped to specific
angles in the final system. Three examples of different pitch
(corresponding to different values of ) are shown in Fig. 14.

B. Rapid Transitions

An important performance measure is the response time of
the sensor to sudden changes in orientation. In this circuit, re-
sponse time is dependent on the speed of the photodiodes (fast)
and the charging time of the , , and lines (slow). The
charging time depends on both the bias currents used in the
adaptation circuit and the combined capacitance of the , ,
and lines and added external capacitance. Higher bias cur-
rents in the adaptation circuits or reduced external capacitance

Fig. 14. Changes in the pitch angle without changes in horizon vector. Dif-
ferent �� values correspond to the horizon lines of different pitch angles.

can improve speed. If no capacitors are added, however, oscilla-
tions due to the horizon vector adaptation circuit can be large, so
a compromise must be made between instability and response
time. An example of such a transition is shown in Fig. 15. In this
example, the horizon was changed in both roll and pitch, such
that both vector rotation ( and ) and a shift in the bias
were necessary.

C. Diamond Constraint

We tested the diamond constraint circuit by measuring the
2-D current vector field produced at different combina-
tions [upper panel of Fig. 16]. This was performed by applying
different and voltages and measuring the resulting cur-
rents on those lines. Because the constraint current-vector mag-
nitude is determined by the coordinate and the constraint
error, the vector length drops to zero at the origin and along the
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Fig. 15. Sudden image rotation. In this test, a stationary horizon image is sud-
denly changed to a different orientation. �� transitions in 40 ms. The external
capacitors were 0.022 �F and � ��� � ���� V.

constraint contour (i.e., the diamond). Due to the difficulty in ob-
serving the vector direction in the small raw vectors, the lower
panel shows normalized vector lengths. The diamond pattern
can now be discerned by drawing the contour where the vectors
flip from pointing inward to pointing outward [lower panel of
Fig. 16]. This direction reversal contour represents the equilib-
rium position for the horizon vector.

D. Power Consumption

Although power consumption varies dynamically with the
image properties (e.g., image brightness, horizon-line clas-
sification mismatch, etc.), long-term observations (with the
settings used in the presented measurements) show that the
power-supply current remains below 500 A (or 2.5 mW with a
5-V power supply). Due to the 2-D layout of the circuit with the
origin in the center, the largest pixel coordinates occur on the
margins. Since power consumption in each pixel is based on a
fixed dc current for biasing and a coordinate-dependent current
used in the calculation of the class, the outer pixels burn the
largest amount of power. Power can be saved by scaling down
the -coordinate currents or, possibly, by clever
elimination of some pixels (e.g., using only a ring of pixels or
a sparser density in the periphery).

V. DISCUSSION

In this paper, we describe a low-power visual-horizon de-
tection chip that provides three output signals that can be in-
terpreted to obtain roll and pitch information. The chip also
provides a confidence measure signal that indicates when the
sensor output is reliable (i.e., whether the sensor seems to be
pointed at a horizon line) and has the ability to scan out the
photodiode image. Using a novel mixed-mode circuit imple-
mentation to solve a cost-minimization problem, this real-time
horizon sensor replaces the time- and power-consuming process
of horizon detection in software. Integrating the algorithm onto
a dedicated silicon chip is intended to facilitate stable attitude

Fig. 16. Vector-field measurement of the diamond constraint circuit. Top: At
each �	 and �
 combination ����� � ��� V�, the current in each wire is
measured and displayed as a vector indicating the direction in which the currents
“push” the voltages. The black circles indicate the origin of each vector. Bottom:
To better see the direction of each vector, the magnitudes from the top graph
are normalized with outward-pointing vectors drawn in red (thick) and inward-
pointing vectors in black (thin).

control in micro aerial vehicles at higher altitudes in the face of
turbulence and wind.

Since the computational goal of the chip is to find the horizon
line and not specifically to form an image, a high-resolution
system is not necessary, particularly because the angle estima-
tion process can interpolate. A wide field-of-view and broad
coverage of the sky is much more important and can be pro-
vided by lenses. It should be noted, however, that very wide
angle lenses can create image distortion that may create diffi-
culties for the horizon detection algorithm that expects to see
straight horizon lines.

The photosensitivity in the current implementation is not very
high due to the use of photodiodes instead of phototransistors;
this can easily be modified. The current-mode circuits are de-
signed to operate over a very wide range of photocurrents and
have been tested and shown to operate properly, even in bright
conditions in which the photo-induced carriers in the substrate
might be expected to cause problems. The photodiodes have
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Fig. 17. (a) Photograph of a sample outdoor scene used to stimulate the horizon
sensor chip. This is an approximate framing of the image projected onto the chip.
(b) Resulting class image from sensor exposed to natural daylight illumination.

been shown to be sufficient for most outdoor daylight condi-
tions to properly detect and report the horizon (for example, see
Fig. 17).

Although transistor mismatch can be reduced within indi-
vidual pixel circuits by increasing the size of the transistors, the
aggregate calculation is relatively insensitive to pixel mismatch.

In this chip, we have used broad spectral intensity contrast
(silicon p-n-junction photodiode) to detect the horizon; how-
ever, the contrast between ultraviolet (UV) and green light
[11] is known to be a more reliable measure and could be used
here by adding optical filters and UV-sensitive photosensors. It
should be noted that, although this horizon detection algorithm
has been developed as a sensor to be run in parallel with other
sensor systems, the algorithm could also be integrated with
other vision chips.

In closing, it should be noted that, although the focus of this
paper has been on the development of a visual-horizon detection
chip, the basic approach of individual sensor circuits nudging
the global solution toward minimizing a globally defined error
function has the potential for solving problems in many different
application domains.
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