
Multi-Gbit/sec Low Density Parity Check Decoders with
Reduced Interconnect Complexity

Ahmad Darabiha, Anthony Chan Carusone and Frank R. Kschischang
Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto
Email: {ahmadd,tcc}@eecg.utoronto.ca, frank@comm.utoronto.ca

Abstract— A 3.2-Gbit/sec 2048-bit parallel LDPC decoder is imple-
mented in a 0.18µm CMOS process. We employ two new techniques to
address the interconnect problem: A broadcasting technique reduces the
total amount of check-to-variable interconnect wires by more than 40%.
A hierarchical placement algorithm places the variable and check nodes
in the top-level hierarchy of the design and reduces the maximum wire
length by up to 50%.

I. I NTRODUCTION

Superior error correction performance and parallelizable decoding
algorithms have made Low-Density Parity Check (LDPC) codes [1]
a powerful competitor to turbo codes [2] for reliable high speed com-
munication applications such as long-haul optical channels [3] and
magnetic storage [4]. Two standards have been recently proposed to
adopt LDPC codes: Gigabit Ethernet [5] and Digital Video Broadcast
(DVB) satellite communications [6]. In spite of all their desirable
properties, one characteristic of LDPC codes, namely their random
parity-check matrix, makes implementation of LDPC decoders a
difficult task as this leads to complex interconnect wiring and routing
congestion for practical codes, and hence to a significantly larger and
slower decoder. As an example, 50% of the chip area is unused in [7]
because of the routing congestion. In this paper, we introduce two
new techniques for the design of the internal architecture of nodes
and also for the physical design of the decoder circuit to alleviate
the random interconnect problem for fully parallel LDPC decoder
implementations. We focus on fully parallel architecture in this paper
because it is the only suitable choice for high throughput applications.
At the node level, we introduce thebroadcasting technique that
reduces the total amount of top-level check-to-variable interconnect
wires by more than 40% and allows the decoder to be implemented
in a smaller area and with more relaxed routing requirements. At the
physical level, we proposecolumn reorderingplacement algorithm
that places variable and check nodes to shorten the longest wires in
the post-layout design by up to 50%. These new techniques do not
impose any extra hardware cost, nor do they degrade the performance
of the error correction.

This paper is organized as follows. In Section II, we briefly
review the commonly used iterative message passing algorithm for
decoding LDPC codes and discuss previous work in the design of
LDPC codes/decoders. In Sections III and IV the broadcasting and
column reordering techniques are explained respectively. Section IV
provides the results achieved by applying the above techniques in
the implementation of a length-2048 parallel LDPC decoder. Finally,
Section VI concludes the paper.

II. BACKGROUND

A. LDPC codes and message passing decoding

Low-density parity check codes are a sub-class of linear block
codes that are defined as the null space of a very sparse binary
parity check matrixHM×N . LDPC codes can also be represented

using a bipartite graph, or Tanner graph, where one set of nodes
represents data symbols, also known as variable nodes, and the other
set represents parity check constraints. Each edge in the Tanner graph
corresponds to a ‘1’ in the parity check matrixH. Fig. 1 shows the
Tanner graph for an LDPC code withN = 10 variable nodes and
M = 5 check nodes. This code is called (3,6)-regular LDPC because
all the variable nodes participate in a fixed number of checks (i.e.
variable degreedv = 3) and each check node is connected to the
same number of variable nodes (i.e. check degreedc = 6).

N =10 variable nodes

M =5 check nodes

Degree V = 3

Degree C = 6

Received
Symbol

Decoded
Symbol

Check-to-variable
message

Variable_to_check
message

Fig. 1. Tanner graph for a (3-6)-regular LDPC code and information flow
for message passing algorithm.

Message passing (MP) is an iterative algorithm commonly used
in decoding LDPC codes [8]. Each iteration of MP consists of
updating outgoing messages from both variable and check nodes.
Each outgoing message is calculated using an update rule applied
to all the received messages from all the edges except the edge for
which the message is being calculated. Different update rules are
used for hard decision or soft decision decoding algorithms. Fig. 2
shows a parallel MP decoder block diagram where for simplicity
purposes only one check node and one variable node is present in
the diagram. The variable and check update rules in this diagram
are shown with� and� respectively. To exclude the effect of each
incoming message on its corresponding output, operators� and� are
used that indicate the inverse of the variable and check update rules
respectively. For simplicity, the extra blocks required for initializing
the variable messages in the first iteration and outputting the variable
messages in the last iteration are not present in the diagrams.

B. Previous work

The majority of the previous LDPC code/decoder research has
been on new methods of designing serial decoders. These techniques
usually generate a “hardware aware” parity-check matrix or adopt
a “decoder-first code design” strategy [9] to reduce the required
number of clock cycles to complete one decoding iteration [10]
[11]. While some of the above techniques introduce a good trade-off
between coding performance and hardware cost, they are not usually
applicable for high throughput parallel decoder implementations

Variable
Node

Check
Node

Check-to-variable
message

Variable-to-check
message

Variable Operation

Inverse Variable Operation

Check Operation

Inverse Check Operation

Variable Node Check Node

(b) (c)

(a)

Fig. 2. Original fully parallel LDPC decoding with message passing (a)
Global architecture (b) Variable node (c) Check node.

where the critical issues are complex wiring and interconnection
delay.

Among the works related to parallel LDPC decoder, in [12] and
[13] algorithms are proposed that optimizeH matrix attributes such
as “cut-size” or “loopiness” to reduce wiring complexity. These
techniques, however, do not consider a realistic floorplan (physical
arrangement of variable and check nodes on the chip layout) which
is usually set at the initial design stages of an integrated circuit.
One common problem in the design of practical LDPC codes is that
the designer is constrained to using general purpose CAD tools for
synthesis and physical design (placement and routing). Performing
P&R for an LDPC code of length more than few hundreds is very
time consuming and more importantly does not usually converge to a
viable decoder both in terms of timing and area. This fact necessitates
development of specially tailored CAD tools that are aware of the
characteristics of LDPC codes to replace the general purpose tools.
As an example, in [7] a special buffer placement strategy has been
developed to reduce the routing congestion.

III. BROADCASTING

To mitigate the interconnect problem, we are proposing a scheme
which to the best of our knowledge has not been employed in any
previous parallel LDPC decoders. This scheme is shown in Fig. 3.
The main idea is that we move the inverse check functions (shown
with ‘�’) from check nodes to inside variable nodes without affecting
the functionality of the iterative MP decoding algorithm.

The advantage of this new scheme is that now each check node
broadcastsone outgoing message to all its adjacent variable nodes.
From the hardware implementation point of view, this property allows
for sharing a lot of wires that can not be shared in the original scheme
where separate messages are sent to individual neighboring variable
nodes. Fig. 4 shows an example of broadcasting and how it reduces
the total amount of wires.

Broadcasting technique saves a significant amount of interconnect
wires without introducing any extra computational hardware cost. It
is a new way of partitioning variable and check nodes and shows
its effect in hierarchical design methodology where variable and

check nodes are synthesized in node level and the global routing
is performed in top level.

Fig. 5 shows a zoomed-in portion of the interconnects for a 2048-
bit Reed Solomon-based LDPC code [14] where the total length of
top-level check-to-variable nets is reduced by more than 40% after
applying the broadcast scheme. This figure is generated by Matlab
simulation and assumes that wires can be in any arbitrary direction.
However, we can observe similar congestion effect in the layouts
where only vertical and horizontal wiring is used. We have used a
floorplan similar to [7] where check nodes are located in the center
of the layout and the variable nodes are surrounding them, however
the broadcasting idea can be applied to any arbitrary floorplan.

Variable
Node

Check
Node

Check-to-variable
message

Variable-to-check
message

Variable Node Check Node
(b) (c)

(a)
Broadcasting

Fig. 3. Broadcast architecture (a) Global architecture (b) Variable node (c)
Check node.

Check
Nodes

Variable
Nodes

(a) (b)

Total wires
reduced
by 40%

check-to-var
message

Variable
Nodes

Fig. 4. Broadcasting reduces the total top-level wirelength by sharing the
wires. (a) Output messages of a check node without broadcasting (b) Sharing
interconnect wires of a check node with broadcasting

IV. COLUMN REORDERING

Using generic CAD tools for designing parallel LDPC decoders
usually leads to top level net lengths with a Gaussian-like histogram.
The long wires in the tail of the histogram have a major effect on the
timing of the circuit because they are the only part of timing paths
that differ between different nodes as the logic delays inside variable
nodes and check nodes are almost identical among all the nodes. This
effect is especially visible for longer codes as both net resistance and
net capacitance is proportional to its length. In addition to limiting
the timing performance, the switching activity of these long wires
strongly influences the power dissipation of the decoder.

(a) (b)

Fig. 5. A small section of interconnects for a length-2048 LDPC code
(a) before broadcast (b) after broadcast. There is a 40% reduction in total
wirelength.

To address the problem of long wires explained above, we have
developed a top-level node placement algorithm, calledcolumn
reordering. The column reordering placement algorithm ensures that
the Manhattan distance between those variable and check nodes that
are communicating with each other is less than a desired threshold.
This leads to a wire length histogram that does not suffer from a long
tail and has a maximum length much less than what is achievable
with general purpose placement tools.

This algorithm takes two inputs: A parity-check matrix,HM×N ,
along with a floorplan of nodes. The floorplan is a set of coordinates
at which a variable or a check node can be placed. The floorplan
is imported to our algorithm in the form of two sets of coordinate
vectors{v1, ..., vN} and{c1, ..., cM}, wherevi is the X-Y coordinate
of ith variableslot in the grid shown in Fig. 4 and, similarly,cj
is X-Y coordinate ofjth checkslot in that figure. The numbering
of variable and check nodes does not affect the performance of our
placement algorithm, however for simplicity we have labeled variable
slots starting from the top left corner of the left block and moved
counter-clockwise. The check slots were numbered starting from the
top left corner and going through the rows from left to right.

The output of the algorithm is another parity check matrix,ĤM×N ,
which is the same asH except its columns are reordered.

As columns in a parity check matrix correspond to the variable
nodes,H and Ĥ both represent the structure of the same LDPC
code. In the next few paragraphs, we explain how to generateĤ and
where to place its variable or check nodes to reduce the maximum
chick-to-variable distance.

The column reordering algorithm consists of the following steps:

1) From the given floorplan vectors{v1, ..., vN} and{c1, ..., cM}
create a cost map matrix,DM×N , whereDij is the Man-
hattan distance betweenci and vj and then findLmax =
Max(Dij .Hij). Fig. 6(a) shows a visualizedD matrix in gray
scale such that the brighter pixels indicate longer distance.

2) Pick a length reduction ratio,α, less than but close to1. (The
initial value of α does not affect the final result butα = 0.7
is a good choice for fast convergence)

3) CreateKM×N , whereKij is 0 if Dij < α × Lmax and 1
otherwise. Fig. 6(b) shows a black and whiteK matrix for
α = 0.70 , where white pixels indicate1’s.

4) The 1’s in K can be interpreted as locations in which a
candidate parity-check matrix should not have any ’1’ in order
to have a maximum var-to-check Manhattan distance of less
thanα×Lmax. In the following steps, we reorder the columns
of input HM×N matrix to createĤM×N that does not have
any ’1’ in the white regions ofK:

a) Initialize Ĥ with zeros.
b) Find Kj , the most constrained column ofK, i.e., the

column with the largest number of ‘1’s.
c) Find a column ofH that has no ’1’ in those coordinates

whereKj has ’1’ and set this column asjth column of
Ĥ. If there are more than one columns inH meeting this
constraint, then pick the column that has maximum inner
product withjth column ofD. If no column ofH satisfies
Kj then go to step2 and choose a larger value forα.

d) Repeat steps4(b) and4(c) for the remaining columns of
D andH matrices until all the columns ofD are satisfied
and all columns ofH are set to a column of̂H.

5) Restart from step2. Each time pick a slightly smaller value
of α until a point at which further reduction ofα stalls the
algorithm in step4(c).

After completing the above algorithm, the value of 1–α represents
the maximum possible percentage reduction in the maximum length
of top-level wires. Also, matrixĤ is the same asH but only with
its columns reordered. Now, the optimum location for each variable
and check node of̂H is the same as those slot coordinates given in
the floorplan vectors, i.e., the variable node corresponding to theith
column ofĤ is placed at coordinatevi and similarly the check node
corresponding tojth row of Ĥ is placed at coordinatecj .

The column reordering placement algorithm deals with a high-level
abstract of the decoder, and hence is at least one order of magnitude
faster than generic placement tools and at the same time generates
more satisfying results. Fig. 7 shows the effect of column reordering
on the histogram of top-level nets for a length-2048 irregular RS-
based LDPC code using the floorplan of Fig. 4 resulting in more
than a 30% reduction in the length of the longest wire as it has
pushed back the tail of the originally-Gaussian histogram.

The column reordering algorithm can be applied to any arbitrary
regular or irregularH matrix and with any desired floorplan. It can
also be applied in conjunction with other optimizations in the internal
architecture of the nodes or theH matrix design as it does not change
the structure of the code.

1000 2000

100

200

300

(a)
1000 2000

100

200

300

(b)

Fig. 6. (a) Cost map matrix (b) Cost map matrix after threshold.

V. RESULTS

To illustrate our proposed techniques, we have implemented a
parallel decoder for the (2048,1723) RS-based Gallager (6,32)-regular
LDPC code using a hard decision message passing algorithm. This
code is chosen because it is one of the only two candidate codes
proposed for 10GBase-T Ethernet standard [5]. We have used a
bottom-up design methodology where broadcasting is used at the
node level and column reordering is used for the placement of the
nodes at the top level of the physical design. Figure 8 shows the
layout of the decoder chip using a 0.18µm CMOS process with a
die size of 4.2 mm× 4.2 mm. The decoder performs 32 message
passing iterations per block and each iteration takes two clock cycles.
The maximum clock frequency of the decoder is above 100 MHz
and decoder achieves a throughput of 3.2 Gbit/sec. No other parallel

0.2 0.4 0.6 0.8 1

200

400

0.2 0.4 0.6 0.8 1
0

500

1000

1500

(a)

(b)

37% reduction in
 maximum
 wirelength

Fig. 7. Top-level net length histogram (a) before and (b) after column
reordering.

RS-based LDPC decoder implementation has been reported in the
literature. As a comparison with other high throughput parallel LDPC
decoders, in [7], a 1024-bit irregular LDPC decoder with 4-bit
message passing is described which has a die size of 52.5 mm2 and
operates at 64 MHz and has a throughput of 1 Gbit/sec.

VI. D ISCUSSION ANDCONCLUSION

Using the broadcasting technique introduced in Section III, we
reduced the outgoing messages of check nodes to one common
message whereas the variable node outgoing messages are left intact.
In fact, we can extend the above broadcasting technique tofull-
broadcastingwhere the variable node outgoing messages are also
reduced to one common message for an even greater savings in
interconnect wires. It can be shown that employing full-broadcasting
requires additional inverse check and inverse variable functions and
it also requires extra storage elements. Depending on the choice
of check and variable update functions there may be cases where
this hardware overhead negates the interconnect advantage. Based
on the above argument and due to our choice of variable and check
functions, we have implemented the broadcast scheme as explained
in Section III in the LDPC decoder presented in this work.

Similarly, in the column reordering placement algorithm explained
in Section IV, the location of check nodes were fixed while the
location of variable nodes were optimized. We have also considered
other approaches such as fixing the variable nodes and optimizing
the location of check nodes (row reordering). Our experience shows
that column reordering results are usually slightly superior to those
from row reordering because the number of variable nodes are usually
more than check nodes, providing the column reordering with a larger
search space, hence better solutions. Still, if for any reason the order
of variable nodes has to be kept unchanged, then row ordering can
replace column reordering. The second option is to optimize the
location of both check and variable nodes simultaneously. We did not
choose this approach because it makes the processing time impractical
and in fact we do not expect to get any significant improvement
compared to our column reordering results.

The broadcasting architecture and column reordering algorithm
proposed in this paper addressed the interconnect problem in the
design of parallel high throughput LDPC decoders. The broadcasting
technique reduced check-to-variable wires by more than 40% in
our 2048-bit example. In addition, the maximum length of top-level
wires were reduced by 37% using the column reordering placement

algorithm. We implemented a 3.2 Gbit/sec 2048-bit RS-based LDPC
decoder in a 0.18µm CMOS process using the above techniques.
The performance of this parallel decoder illustrates the effectiveness
of our proposed approaches.

Fig. 8. Layout and floorplan of the 2048-bit LDPC decoder.

ACKNOWLEDGMENT

The authors would like to thank Canadian Microelectronics Cor-
poration for providing the design tools for this project.

REFERENCES

[1] R. G. Gallager,Low-Density Parity-Check Codes. Cambridge, MA:
MIT press, 1963.

[2] C. Berrou and A. Glavieux, “Near optimum error correcting coding:
Turbo codes,”IEEE Trans. on Communications, vol. 44, pp. 1261–1271,
Oct 1996.

[3] B. Vasic and I. B. Djordjevic, “Low-density parity check codes for
long-haul optical communication systems,”IEEE Photonics Technology
Letters, vol. 14, pp. 1208–1210, Aug 2002.

[4] T. Mittelholzer, A. Dholakia, and E. Eleftheriou, “Reduced-complexity
decoding of low density parity check codes for generalized partial
response channels,”IEEE Trans. on Magnetics, vol. 37, no. 2, pp. 721–
728, March 2001.

[5] IEEE 802.3 10GBase-T Study Group Meeting, World Wide Web, http:
//www.ieee802.org/3/10GBT/public/jul04/rao-1-0704.pdf, July 2004.

[6] European Telecommunication Standards Institue, World Wide Web, http:
//www.dvb.org/documents/white-papers/wp06.DVB-S2.final.pdf.

[7] A. J. Blanksby and C. J. Howland, “A 690-mw 1-Gb/s 1024-b, rate-1/2
low-density parity-check decoder,”IEEE Journal of Solid-State Circuits,
vol. 37, no. 3, March 2002.

[8] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and
the sum-product algorithm,”IEEE Trans. on Information Theory, vol. 47,
pp. 498–519, Feb 2001.

[9] E. Boutillon, J. Castura, and F. R. Kschischang, “Decoder-first code
design,” inProceedings of Turbo Codes, Brest, France, 2000, pp. 459–
462.

[10] M. M. Mansour and N. R. Shanbhag, “High-throughput LDPC de-
coders,”Trans. on VLSI Systems, vol. 11, no. 6, Dec 2003.

[11] T. Zhang and K. K. Parhi, “Joint code and decoder design for
implementation-oriented (3, k)-regular LDPC codes,” inIEEE Asilomar
Conference, Nov 2001, pp. 1232–1236.

[12] M. Mohiyuddin, A. Prakash, A. Aziz, and W. Wolf, “Synthesizing
interconnect-efficient low density parity check codes,” inDesign Au-
tomation Conference, June 2004, pp. 488–491.

[13] J. Thorpe, “Design of LDPC graphs for hardware implementation,” in
International Symposium on Information Technology, Lausanne, Switzer-
land, July 2002.

[14] I. Djurdjevic, J. Xu, K. Abdel-Ghaffar, and S. Lin, “A class of low-
density parity-check codes constructed based on Reed-Solomon codes
with two information symbols,”IEEE Comm. Letters, vol. 7, no. 7, July
2003.

