
On the Implementation of 128-Pt FFT/IFFT for 
High-Performance WPAN 

 
Clare Huggett*, Koushik Maharatna*, Kolin Paul** 

*University of Bristol, Bristol, UK 
**Indian Institute of Technology, Delhi, India 

Email: {ch9346, Koushik.Maharatna}@bristol.ac.uk; kolin@cse.iitd.ac.in 
 
 

Abstract - This paper deals with the efficient realization of a 
128-pt FFT/IFFT processor for application in IEEE 802.15.3a 
standard. The 128-pt FFT/IFFT architecture has been 
designed by devolving it into one 8-pt and one 16-pt FFT. The 
16-pt FFT was decomposed again and two separate 128-pt 
FFT algorithms have been developed, viz., 8x4x4 and 8x2x8. 
Their relative merits and demerits have been analyzed from 
the algorithm as well as implementation point of view. The 
architectures have been prototyped on a Virtex II FPGA. The 
results indicate that the 8x2x8 architecture is better suited for 
the above mentioned purpose. 

 
I. INTRODUCTION 

 
High performance Wireless Personal Area Networks 

(WPAN) is currently the focus of research and 
development. IEEE 802.15.3a standard is intended for the 
development of such a WPAN system with a target data 
rate of up to 480 Mbps. Although the standardization 
committee has not yet finalized the standard, the most 
popular proposal under consideration uses a Multi-band 
Orthogonal Frequency Division Multiplexing (OFDM) 
based physical layer (PHY) [1] implementation. FFT/IFFT 
is one of the most computationally intensive components 
in such an OFDM-based PHY implementation. In this 
paper we concentrate on the efficient implementation of 
the FFT/IFFT processor for the above mentioned standard. 

Proposal [1] states that a 128-pt FFT/IFFT has to be 
performed within 312.5 ns. This massive computation rate 
can only be supported either at a very high frequency 
(achievable with the 90 nm technology) or using massive 
parallelism. However, since the target application is of a 
mobile and portable nature, the second approach may lead 
to significant power consumption which is in direct 
contradiction with the application goal. Thus, algorithm 
level reformulations as well as innovative design 
techniques have to be developed to simultaneously satisfy 
the power and timing constraints. 
This paper reports a high-throughput low-power 16-bit 
fixed point 128-pt FFT/IFFT implemented on a FPGA. It 
may be noted that there are implementations [2] which 
report a higher throughput but they do so by having 

parallelism and duplicating functional units like 
multipliers. This of course gives rise to “big” circuits 
which consume unnecessary large amounts of power. Our 
contribution in this paper represents a “sequential” design 
which operates at the required frequency and is extremely 
low power. We achieve this by totally avoiding “complex 
multipliers” and replacing them by simple pipelined shift-
and-add units which helps us to achieve high operating 
frequency at low power. We propose two different 
algorithmic reformulation and subsequent architectures for 
computing 128-pt FFT. The architectures are targeted 
towards 90 nm process. Since the process has just been 
announced, we choose to illustrate and prototype our 
systems on the Virtex II family [3] of FPGA which are 
built with a 130 nm process. We then scale the FPGA 
performance suitably to estimate the ASIC performance 
following certain previous comparisons [4] established in 
literature. The remainder of the paper is structured as 
follows: Section II deals with the algorithmic 
reformulation and comparison of the proposed methods 
with the existing approaches. In Section III the respective 
architectures have been described while Section IV 
provides the implementation details of the architectures on 
FPGA and compares their relative performances. We 
summarize our contribution and draw some conclusions in 
Section V.  
 

II. THEORETICAL GROUNDWORK  
 
The N-point Discrete Fourier Transform (DFT) of a 
complex data sequence Bk is defined by [5]  

∑
−

=

=
1

0
)()(

N

k

rk
NWkBrA       (1) 

where r, k ∈ {0, 1, …, N−1} and WN = e−j2π/N, known as 
the twiddle factor. 
Now considering N = MT, r = s+Tt and k = l+Mm, 
equation (1) can be rewritten as 

∑ ∑
−

=

−

=







 +=+
1

0

1

0
)()(

M

l

T

m

sm
T

sl
MT

lt
M WMmlBWWTtsA    (2) 

55130-7803-8834-8/05/$20.00 ©2005 IEEE.



For the present problem considering M = 8 and T = 16 one 
may write 

∑ ∑
= =








 +=+
7

0

15

0
161288 )8()16(

l m

smsllt WmlBWWtsA    (3) 

Equation (3) suggests that the 128-pt. DFT can be 
computed by first computing an 8-pt DFT on the 
appropriate data slot (described by equation (3)), then 
multiplying them by 105 non-trivial complex twiddle 
factors and computing the 16-pt DFT on the resultant data 
with appropriate data reordering.  
The 16-pt DFT can be decomposed further using the same 
method. In the present work, we have explored two 
different types of decomposition of it viz., 4x4 and 2x8. 
The important point to be noted here is that for realization 
of the 8-pt DFT using a Decimation-In-Time (DIT) FFT 
algorithm, explicit multiplications are not required. The 
constants to be multiplied for the first two columns of the 
FFT flowgraph are either 1 or j. In the third column, the 
multiplication of 1/√2 can be realized using hard-wired 
shift-and-add operations. Similarly, using a radix-4 FFT 
for realization of 4-pt DFT, one does not need explicit 
multiplication either. As shown in Table 1, using these 
decompositions, a significant reduction in the number of 
required complex multiplications can be achieved 
compared to the existing techniques. 
 

Algorithm Non-trivial complex 
multiplication 

Radix-2 258 
Radix-4 204 

Split-Radix 186 
8x4x4 168 
8x8x2 152 

 
Table1. Comparison of the multiplicative complexity of the proposed 
schemes with other existing schemes 
 
Apart from the reduction of complex multiplications, 
another advantage of these decompositions is that of the 
105 non-trivial twiddle factors required in the proposed 
schemes, only 16 are unique. This can be exploited to 
reduce the overall size of twiddle RAM which is one 
additional advantage compared to the other existing 
schemes. 
The IFFT can be performed using the same structure. First, 
the real and the imaginary parts of the input have to be 
swapped and the computation proceeds as a forward FFT. 
At the output, the real and imaginary parts are swapped 
back and the output is scaled by 128. 
 
 

III. ARCHITECTURE 
 
The generalized architecture of the 128-pt FFT can be 
derived from equation (3) and is shown in Fig. 1. The 

processor consists of an input unit, an 8-pt FFT, a 
multiplier unit, a 16-pt FFT, a resorting unit, an output unit 
and a master control counter.  

 
Fig. 1. Block diagram of the proposed FFT processor  

 
A. Input Unit  
The input unit consists of an input register bank having 16-
bit wordlength that can store 113 complex samples. It is 
equipped with two single bit signals “mode” and 
“data_in”. While the first one enables the processor to 
understand which mode of operation is needed (whether 
FFT or IFFT), the second one indicates the presence of 
valid data at the input. After the assertion of the data_in 
signal, serial data is inputted at every clock cycle at the 
112th position of the input register bank and at every clock 
cycle the complex data having index i is shifted to the 
(i−1)th position where i ∈ {1, .. 112}. The register bank is 
provided with eight pairs of 16-bit fixed wired outputs 
corresponding to the registers having index 8j, where j ∈ 
{0, …, 7}. When the input buffer is filled, the appropriate 
data (see equation (3)) gets self aligned with these hard-
wired outputs and is delivered in parallel to the first 8-pt 
FFT unit. This operation is continued in every cycle. A 7-
bit counter controls the serial input of the data in the 
register bank, which is enabled with the assertion of the 
data_in signal. When the 112th position of the input 
register bank is full a signal CE is asserted to enable the 
master control counter. The subsequent operations are 
controlled by the master counter. This method of 
downward shifting of data in conjunction with its self-
alignment with the hard-wired outputs reduces the number 
of multiplexed signals by a factor of 112 and 14 at the 
input and output of the input unit respectively. This 
massive reduction of wiring allows a more efficient layout 
of the processor. 
 
B. 8-pt FFT Unit  
It has been discussed in Section 2, that to implement the 8-
pt FFT one does not need to use conventional digital 
multipliers. This fact opens up the scope to implement a 
fully parallel 8-pt FFT unit. In our implementation we 
realized a pipelined 8-pt FFT architecture following the 8-
pt DIT FFT flowgraph where each complete column of the 
8-pt FFT is computed in a single clock cycle. Thus, a 
complete 8-pt FFT can be computed in three clock cycles. 
The multiplications by the factor 1/√2 in the third column 
are realized using hard-wired shift-and-add operations and 
thus require minimal hardware. 

5514



C. Multiplier Unit 
 It has already been mentioned in Section 2 that to carry 
out 105 non-trivial complex multiplications our 
architecture needs only 16 unique sets of twiddle factors. 
The complete operation can be carried out by changing the 
signs or swapping the real and imaginary coefficients of 
them. However, in the steady state, the data from the 8-pt 
FFT unit arrives at every clock cycle, consequently a 
single complex multiplier unit cannot be used to take the 
full speed advantage offered by the parallel 8-pt FFT. On 
the other hand, employing 8 complex multipliers will 
increase the area and power consumption of the entire 
system. However, since the twiddle factors used to 
multiply each of the incoming samples are known a priori, 
one can realize each of them using a simple shift-and-add 
technique. As an example, a constant 0.99895 can be 
decomposed to 1−2−10−2−12 with 16-bit accuracy. Thus the 
multiplication of any input by this constant becomes a 
series of additions/subtractions of right shifted values of 
the input quantity. This approach has previously been used 
in [6] which resulted in a significant performance gain in 
terms of power consumption and area. Since the target 
architecture in the present case must run at a high 
frequency to satisfy the required data rate, we realized each 
of these 16 constants in a pipelined way and arranged them 
in parallel. The multiplier unit also has a temporary storage 
register bank that can hold 128 complex data. Again, hard-
wired connections are used like the input unit and the data 
after multiplication enters the registers at locations 127 – 
120. At every cycle, the data is down shifted as a block of 
eight until the register bank is full. This approach saves 
signal wire multiplexing by a significant amount. To 
deliver the data to the 16-pt FFT unit once again the hard-
wiring and data self-alignment strategy used in the input 
unit has been employed and thereby substantially reducing 
the number of signal multiplexing again. 
 
D. 16-pt FFT 
 Using the decomposition schemes proposed in Section 2, 
the 16-pt FFT module is realized using two different kinds 
of further decomposition which resulted in two different 
architectures viz., Arch1 (4x4 decomposition) and Arch2 
(2x8 decomposition) for 128-pt FFT. Arch1 contains two 
4-pt FFTs where each of the 4-pt FFT is realized using 
radix-4 butterfly. On the other hand, Arch2 contains a 2-pt 
and 8-pt FFT. Once again, the 8-pt FFT module is realized 
following the similar strategy described for the first 8-pt 
FFT module. Both 16-pt FFT architectures have a 
multiplier unit, which operates in a similar fashion to the 
main multiplier unit. Here only three pairs of unique 
constants are required. Once the data has been multiplied, 
it is put directly into a register bank able to hold 16 
complex samples. The inputs to this block are hard-wired 
and the data is entered at either every 4th / 8th register 
depending on the architecture. At every cycle the data is 
down shifted until the buffer is full. At this point another 

data sample is ready to be input, so rather than hold-up this 
data a second 16 register buffer is used. The data is 
transferred to this buffer and is down shifted at every clock 
cycle in blocks of 4 (Arch1) or 8 (Arch2) until all data has 
been passed onto the next module. 
 
E. Resort Unit 
 To make the reshuffling at the output to form the full 128-
pt FFT simpler it was spilt into two stages. The resort 
module takes the data directly from the 2nd FFT in the 16-
pt FFT module and reorders it to form a set of 16 data. 
This is done by hardwiring the output of the second FFT to 
every 4th/2nd register and down shifting it at every clock 
cycle. 
  
F. Output Unit 
 The output has a dual structure of the input unit. It 
consists of a complex bank of 128 registers and a 7-bit 
counter. The data is hard-wired into this register bank at 
every 8th register position and is down shifted at every 
clock cycle until the buffer is full. Once full, the buffer is 
emptied from the 0th register while continuing down 
shifting of the data until it is empty. When the first sample 
is outputted the signal data_out is asserted high and is held 
high until the buffer is exhausted. This indicates valid data 
at the output. If the IFFT has to be performed, the real and 
imaginary parts of the data are swapped and are shifted to 
the right by 7 bits (scaling by 128). As with the input 
module this is also indicated by the signal mode. 
 
 G. Master Control Counter 
 The 7-bit master counter is responsible for synchronizing 
the entire system. It is turned on with the assertion of the 
signal CE and it stops counting when the last set of data 
has reached to the output buffer. The master counter is 
used to generate an enable signal for the modules at 
different time instants. This easily translates to implement 
clock gating in the entire circuitry with no additional 
design effort.  
 

IV. IMPLEMENTATION AND PERFORMANCE 
EVALUATION 

 
The architectures described in the previous section have 
been coded in VHDL. The parallel-to-parallel 128-pt FFT 
is performed in 73 and 104 clock cycles for Arch1 and 
Arch2 respectively. The architectures were synthesized 
using the Xilinx tool chain. The target board was 
Alphadata ADM-XRC II which has a Virtex II 6000 series 
FPGA. The Virtex II FPGA represents a product from 130 
nm technology. The results of post place and route are 
shown in Table 2. It is clear that the second architecture is 
more area and power efficient while runs almost at the 
same frequency as the first one. The number of clock 
cycles required for Arch2 can be brought down from 104 
to 56 by simply duplicating the 2-pt FFT butterfly structure 

5515



four times in the 16-pt FFT module. Since the basic 2-pt 
FFT is very simple, this added parallelism will result in a 
minimal hardware overhead. The maximum operating 
frequency required to satisfy the goal can be tailored 
further by adding another degree of parallelism with 
minimum area overhead. 
 

Parameters Arch1 Arch2 
# of slices 20751 20580 

# of slice Flip Flops 22437 23171 
# of 4-input LUTs 32604 32245 

# of IO 67 67 
Clock load 23203 23905 

Maximum frequency (MHz) 63 62 
Power Estimate (mW) 712 337 

 
Table2. Comparison of Arch1 and Arch2 implementation  

 
The maximum operating frequency is limited by the 
routing resources available in the FPGA. The critical paths 
have up to 25 – 37 % of routing involved and hence limit 
the highest frequency achievable.  
When implemented on a same process technology, it has 
been reported [4] that the ASIC performance scales up to 2 
- 2.5 times compared to an FPGA implementation. If we 
scale the performance to a higher process technology (90 
nm), the throughput is expected to be about at least 4 
times. Hence we expect that our proposed architectures can 
easily meet the performance requirement of computing the 
128-pt FFT in 312.5 ns in 90 nm process (ASIC). 
During implementation, we optimized our architectures by 
removing the set-reset logic for many of the internal Flip- 
Flops of the computation blocks. This resulted in area 
savings to a great amount (1:7). The 16 unique twiddle 
factors are synthesized in a LUT and thus, avoiding the 
requirement of RAM. The floorplan of Arch2 is shown in 
Fig. 2. 
The power estimates, using XPower, are also presented in 
Table 2. While it is impossible to accurately scale exact 
power dissipation figures for ASIC, from design 
experience these estimates show that if implemented in 90 
nm technology we can expect the architectures to dissipate 
at least about 1/4 of the power. Furthermore, each of the 
sub blocks operates at a precise value of the control 
counter. Thus, significant power reduction is further 
possible by employing clock gating while implementing 
the proposed architectures in ASIC. 
 

V. CONCLUSION 
 
Two potential architectures for realizing 128-pt FFT/IFFT 
processor for IEEE 802.15.3a standard have been proposed 
and implemented on a Virtex II FPGA. Though it is natural 
that the FPGA implementation gives much lower 
maximum frequency of operation compared to the ASIC 

implementation, it sets a baseline for choosing an 
appropriate architecture. In our implementation it is found 
that the architecture based on 8x2x8 decomposition of the 
128-pt FFT performs better in terms of area compared to 
the architecture based on 8x4x4 decomposition while both 
of them give significant reduction of algorithmic 
complexity compared to the existing schemes.  
 

 
 

Fig. 2: Floorplan of Arch2 
 
In terms of power, Arch2 shows approximately 52% less 
power consumption than that of Arch1. The number of 
required clock cycles of Arch2 can be brought down 
further by adding another degree of parallelism in its 16-pt 
FFT module with very nominal area overhead. We expect 
that when implemented in the form of ASIC using 90 nm 
technology, both of the architectures will satisfy the timing 
constraint and Arch2 will consume much less power 
compared to the Arch1 and thus is a better choice. 
 

 REFERENCES 
 
[1] http://grouper.ieee.org/ groups/802/15/pub/2003/ May03/ 
03142r1P802-15_TG3a-TI-CFP-Document.doc 
[2] I. S. Uzun and A. A. Bouridane, “FPGA Implementations of Fast 
Fourier Transforms for Real-Time Signals and Image Processing”, 
Proceedings of  IEEE International Conference on Field-Programmable 
Technology (FPT), 2003. 
[3] http://www.xilinx.com/virtex2 
[4] R. J. Peterson and B. L. Hutchings, “An assessment of the suitability 
of FPGA-Based system design for use in DSP”, 5th Intl Workshop on FPL 
and Application, Oxford, England August 1995.  
[5] A. M. Despain, “Very fast Fourier transform algorithms hardware for 
implementation”, IEEE Trans. Comput., vol. C-28, no. 5, pp. 333 – 341, 
May 1979. 
[6]  K. Maharatna, E. Grass and U. Jagdhold, “A 64-point Fourier 
transform chip for high-speed Wireless LAN application using OFDM”, 
IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 484 – 493, March 2004. 

5516


	MAIN MENU
	Front Matter
	Table of Contents
	Session Chair Index
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

