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Abstract— Traditional statistical analysis and mining of net-
work data are often employed to determine traffic distribution,
to summarize a user’s behavior patterns, or to predict future
network traffic. We analyze three months of network log data
from a deployed public safety trunked radio network. After data
cleaning and traffic extraction, we apply the K-means algorithm
and identify that three clusters of talk groups best reflect users’
behavior patterns represented by the hourly number of calls.
We propose a traffic prediction model by applying the classical
SARIMA models on clusters of users. The predicted network
traffic agrees with the collected traffic data and the proposed
cluster-based prediction approach performs well compared to
the prediction based on the aggregate traffic.

I. INTRODUCTION

Analysis of traffic data from operational networks provides
insight into the behavior of network users. It may lead to better
utilization of network resources and better quality of services.
Data clustering may be used to identify traffic patterns. Net-
work users are usually classified into user groups according to
their geographical location, organizational structure, payment
plan, or behavior pattern.

Prior analysis of traffic data from a metropolitan-area
wireless network indicated the recurring daily user behavior
and mobility patterns [1]. Analysis of traffic from a trunked
radio network showed that the call holding time distribution
is approximately lognormal [2], while the call inter-arrival
times are long-range dependent and could be modeled by
both Weibull and gamma distributions [3]. Channel utilization
and the multi-system call behavior of trunked radio network
have also been analyzed using network simulation tools [4].
A preliminary study of traffic data collected from this radio
network was reported in [5].

In this paper, we analyze traffic data collected from a
deployed network. We predict network traffic based on the
aggregate traffic and based on the clusters of users identified
by the K-means algorithm. Experimental results show that
the cluster-based prediction produces results comparable to
the traditional prediction of network traffic. An advantage of
cluster-based prediction is that it may be used for predictions
in networks with variable number of users.

The network and the traffic data are introduced in Section II.
In Section III, the K-means algorithm is applied to classify
talk groups into clusters based on their calling behavior. The
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aggregate and cluster-based traffic prediction models are given
in Section IV. The paper concludes with Section V.

II. E-CoMM NETWORK AND TRAFFIC DATA

The traffic data were collected from the E-Comm net-
work [6]. We examine the database schema and describe the
procedure for data cleaning and the traffic data extraction.

A. E-Comm Network Overview

E-Comm is the regional emergency communications center
providing emergency dispatch/communication services for a
number of agencies in the Greater Vancouver Regional District
(GVRD) in Southwest BC, Canada. The E-Comm network is
currently used by sixteen agencies, such as police, fire and
rescue, and ambulance. Each agency has a number of affiliated
talk groups and the entire network serves 617 talk groups.

The E-Comm network is a trunked radio system, employ-
ing the Enhanced Digital Access Communications System
(EDACS [7]) technology. The E-Comm network architecture
consists of 11 cells. Each cell covers one or more munici-
palities. The basic talking unit in the trunked radio network
is a talk group of individual users who need to communicate
frequently.

A Group Call is the typical call made in a trunked radio
system. A user places a group call by pressing the push-to-
talk (PTT) button on the radio device. All users belonging to
the same talk group hear the communications in a group call
irrespective of their physical locations.

A Multi-System Call represents a single group call involving
more than one system/cell. If all members of the talk group
reside within one system, the group call is a single-system
call occupying only one channel in the system. However,
when group members are distributed over multiple systems,
the group call becomes a multi-system call that occupies one
traffic channel in each system.

B. Data Preprocessing and Extraction

The E-Comm database contains event log tables record-
ing the network activities. They are aggregated from the
distributed database of the individual network management
systems. Data records span from 2003-03-01 00:00:00 to
2003-05-31 23:59:59. They are sorted in 92 event log tables,
each containing one day’s events. The size of the database is
~6 Gbytes, with 44,786,489 records.

Not all data fields are useful to our analysis. Certain
fields are not populated in the database, while others have



TABLE I
A SAMPLE OF CLEANED DATA. DATE: 2003-03-01, CALL TYPE = 0, CALL
STATE = 0, MULTI-SYSTEM CALL = 0.

Time Call System  Channel | Caller Callee
No,| (hh:mm:ss)(ms) | duration Id Id
(ms)

1 00:00:00 30 1340 1 12 13905 401
6 00:00:00 489 1350 7 4 13905 401
29| 00:00:03 620 7550 2 7 13233 249
31| 00:00:03 760 7560 1 3 13233 249
37| 00:00:04 260 7560 7 6 13233 249
38| 00:00:04 340 7560 6 6 13233 249

identical values. From the 26 fields in the database, 9 fields
that capture the user’s behavior and network traffic are of
particular interest to our study: Event_UTC_At, Duration$ms,
Systemld, Channelld, Caller, Callee, CallType, CallState, and
MultiSystemCall. A sample of the pre-processed traffic data
is shown in Table I. After reducing the database dimension
to 9, we removed the redundant records. The records with
call_state = 1, which implies the call drop event, are redundant
because each call drop event already has a corresponding call
assignment event in the database. (Note that the reverse is not
true.) We also removed records for the control channel whose
traffic data were not available.

If a call is a multi-system call involving several systems,
one record for each involved system is created to represent this
call in the original event log database. As shown in Table I,
based on the caller, callee, and call duration, records 1 and
6 represent one group call from caller 13905 to callee 401,
involving systems 1 and 7 and lasting ~1350 ms. Records 29,
31, 37, and 38 represent a group call from caller 13233 to
callee 249, involving systems 2, 1, 7, and 6.

The call duration is sometimes inconsistent because of the
transmission latency and glitches in the distributed database
system. For example, records 1 (1340 ms) and 6 (1350 ms) in
Table I, have 10 ms difference in call duration field although
they represent one single group call. We used 50 ms difference
in call duration as an empirical choice when combining the
multiple records. The result of the data preprocessing is a
database with ~55% fewer records. After the traffic extraction,
the number of records in the database was reduced to only 19%
of the original records.

III. DATA CLUSTERING

Clustering analysis groups or segments a collection of
objects into subsets or clusters so that the resulting intra-
cluster similarity is high while the inter-cluster similarity is
low. An object can be described by a set of measurements
or by its relations to other objects. Network users’ behavior
may be characterized by the time of the calls, the average call
duration, or the number of calls during a certain time interval.

A commonly used metric in the telecommunication industry
is the hourly number of calls. It may be regarded as the
footprint of a user’s calling behavior. Since the talk group is
the basic talking unit in the E-Comm network, we use a talk
group’s hourly number of calls to represent a user’s behavior.
The collected 92 days of traffic data (2,208 hours) imply that
each talk group’s calling behavior may be portrayed by the

2,208 ordered hourly numbers of calls.

A general approach to clustering is to view it as a density
estimation problem. We assume that data are generated from
a mixture model where the probability at each data point is
the sum of a mixture of several distributions. We begin by
choosing K seeds (means of distributions) and iterate over
the estimation and the maximization steps. Distances of each
data point from the K seeds are first calculated (estimation
step). The mean of each distribution is then moved towards
the centroid of the entire data set, weighted by the number
of data points in the cluster (maximization step). These steps
are repeated until the distributions no longer move. At the end
of the process, each point is tied to a certain cluster with the
highest probability. In a mixture model M with K clusters
Ci,i=1,---, K, the probability of a data point x belonging
to the model is:

K
P(z[M) =YW, P(x|C;, M),
i=1

where W; is the mixture weight.

One of the most commonly used data clustering algorithms
is K-means [8]. The number of clusters K (known a priori)
and the object similarity function are two input parameters.

We use the inter-cluster and the intra-cluster distances to
assess the overall clustering quality. The inter-cluster distance
reflects the dissimilarity between clusters. It is defined as the
Euclidean distance between two cluster centroids (the mean
value of the objects in a cluster, which can be viewed as
the cluster’s center of gravity). The intra-cluster distance is
the average distance of objects from their cluster centroids,
expressing the coherent similarity of data in the same cluster.
A large inter-cluster distance and a small intra-cluster distance
indicate better clustering. The overall clustering quality indi-
cator is defined as the difference between the minimum inter-
cluster and the maximum intra-cluster distances. The greater
the indicator, the better the overall clustering quality. Another
measure for the clustering quality is silhouette coefficient [8],
which is rather independent of the number of clusters K. If
a(x) and b(x) are average distances between data point z and
other data points in clusters A and B, respectively, then:

silhouette coefficient(x) = (b(x) — a(x))/maz{a(z),b(x)}.

Experience shows that larger values of silhouette coefficient
produce better results. Values between 0.7 and 1.0 indicate
clustering with excellent separation between clusters.

The inter-cluster and the intra-cluster distances, the overall
quality, and silhouette coefficients for various number of
clusters K are shown in Table II. Cluster sizes are: 17, 31, and
569 for K = 3; 17, 33, 4, and 563 for K = 4; and 13, 17, 22,
3, 34, and 528 for K = 6. Based on the overall quality and
the silhouette coefficient, K = 3 produces the best clustering
results. One week of traffic data for talk groups in each cluster
and their distinct calling behavior are shown Fig. 1.

The properties of the three K-means clusters are given in
Table III. The first cluster has 17 talk groups, representing
the busiest dispatch groups whose main tasks are coordinating



TABLE II
K-MEANS CLUSTERING: CLUSTER DISTANCES.

TABLE 111
K-MEANS CLUSTERS OF TALK GROUP (NC: NUMBER OF CALLS).

Cluster; Min Max. Avg. Total Total
size nc nc nc nc nc (%)
17 | 0-6 | 352-700 94 -208 5,091,695 59
31 | 0-3 | 135- 641 17 -66 2,261,055 26
569 0 1-1613 0-16 1,310,836 15
TABLE IV

SUMMARY OF SELECTION CRITERIA FOR SARIMA MODELS.

(p,d,q) x (P,D,Q)s m nmse AIC AICo BIC

(2,0,9) x (0,1,1)24 1680 | 0.379 | 22744.6 | 227449 | 22826.8
(2,0,1) x (0,1,1)165 | 1680 | 0.174 | 23129.8 | 23129.8 | 23161.9
(1,0,1) x (0,1,1)165 | 1680 | 0.175 | 23145.1 | 23145.1 | 231708
(2,0,9) x (1,1, 1)24 | 1680 | 0.525 | 25292.1 | 25292.4 | 25382.1
(1,0,2) x (1,1,1)24 | 1680 | 0.411 | 25332.6 | 25332.6 | 253712
(2,0,1) x (0,1,1)24 1680 | 0.408 | 25360.5 | 25360.6 | 25392.6
(3,0,1) x (0,1,1)24 1680 | 0.404 | 25361.2 | 25361.2 | 25399.7

Avg. Avg. Max. Min. Overall Silhouette
K intra inter intra inter clustering coeff.
dist. dist. dist. dist. quality
3 1882.14 | 4508.38 | 2971.76 | 1626.40 -1345.36 0.7756
4 1863.00 | 3889.12 | 2971.76 | 1556.68 -1415.07 0.7684
6 | 2059.67 | 3284.52 | 3299.43 594.21 -2705.21 0.7640
9 1020.08 | 3520.04 | 3065.25 808.28 -2256.96 0.7492
12 | 1372.67 | 3582.98 | 3278.14 | 731.26 -2546.88 0.7435
16 | 983.63 1815.79 | 3571.27 | 248.19 -3323.07 0.7337
20 | 1355.80 | 2458.39 | 3604.33 314.49 -3289.84 0.7386
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Fig. 1. K-means clustering: number of calls in the three clusters.

and scheduling other talk groups for certain tasks. The second
cluster contains 31 talk groups with medium network usage.
The last cluster identifies a group of the least frequent network
users who made on average no more than 16 calls per hour.
These interpretations of clusters have been confirmed by the E-
Comm domain experts. Therefore, in the prediction of traffic,
we use the three clusters identified by K-means.

IV. TRAFFIC PREDICTION
We compare predictions of network traffic based on aggre-
gate traffic and based on user clusters.
A. Traffic Prediction Based on Aggregate Traffic

The Auto-Regressive Integrated Moving Average (ARIMA)
model [9] is a general model for forecasting a time series.
A seasonal ARIMA (SARIMA) [9] (p,d,q) x (P,D,Q)s

model captures the seasonal pattern. Parameters (p, P), (d, D),
and (q, Q) represent the order of the Auto-Regressive (AR),
difference, and Moving Average (MA) model for the original
data points and the seasonal pattern, respectively. Parameter S
is the seasonal period of the models. SARIMA models have
been applied to modeling and predicting traffic from a large
scale network [10] and a small scale subnetwork [11]. They
may be represented as:

¢(B*)p(B)(1 - B*)P(1 = B)'X, = 0(B*)0(B)Zy,

where ¢(B) and 0(B) represent the AR and MA parts, ¢(B?)
and 0(B?) represent the seasonal AR and seasonal MA parts,
respectively. B is the back-shift operator: B'X; = X,_;.

The E-Comm network traffic possesses both daily and
weekly cyclic patterns. Both 24-hour and 168-hour (one week)
intervals are selected as seasonal period parameters. The
order of the SARIMA models is selected based on the time
series plot of traffic data and the autocorrelation and partial
autocorrelation functions. In order to check validity of the
parameter selection for SARIMA models, we employed the
Akaike’s information criterion AIC, the Akaike’s information
criterion corrected AICC [12], and the Bayesian information
criterion BIC' [13]. Based on the 1,680 training data, mod-
els (2,0,9) x (0,1,1)24 and (2,0,1) x (0,1,1)16s have the
smallest criterion values. Hence, they are selected as model
candidates. The order (0,1,1) is commonly used for the
seasonal part (P, D, Q) because the cyclical seasonal pattern
is usually a random-walk and may be modeled as an MA
process after one-time differencing. The model’s goodness-of-
fit is validated using the null hypothesis test that includes time
plot analysis and the autocorrelation function of the model
residual. The summary of parameter selection criteria is shown
in Table IV.

Four models with parameters fitted for the E-Comm network
traffic and the aggregate traffic prediction results are shown in
Table V. The model performance is tested for several groups
of data (A, B, C). We forecast future n traffic data based on
m past traffic data samples. Normalized mean square error
(nmse) is used to measure prediction quality by comparing
the deviation between predicted and observed data. The nmse
of the forecast is equal to the ratio of the normalized sum of



TABLE V
PREDICTION RESULTS BASED ON THE AGGREGATE TRAFFIC.

No. (p|d|q|P|D]|Q S m n nmse
Al 210191071 1 24 | 1512 | 672 | 0.3790
A2 |20 |1 ]0]1 1 24 | 1512 | 672 | 0.3803
A3 | 2]10|9]0]1 1 168 | 1512 | 672 | 0.1742
A4 |20 | 1|01 1 | 168 | 1512 | 672 | 0.1732
Bl 210191071 1 24 | 1680 | 168 | 0.3790
B2 | 20| 1]0]1 1 24 | 1680 | 168 | 0.4079
B3 210(19]0]1 1 168 | 1680 | 168 | 0.1736
B3 2101071 1 | 168 | 1680 | 168 | 0.1745
Cl 210191071 1 24 | 2016 | 168 | 0.3384
C2 |20 1]0]1 1 24 | 2016 | 168 | 0.3433
C3 2101901 1 | 168 | 2016 | 168 | 0.1282
C4 | 201|001 1 | 168 | 2016 | 168 | 0.1178

the variance of the forecast to the squared bias of the forecast.
Smaller values of nmse indicate better prediction model.
Comparisons of rows Al with A2, B1 with B2, and Cl1
with C2, indicate that Model 1 ((2,0,9) x (0,1,1)24) gives
better prediction results than Model 2 ((2,0,1) x (0,1, 1)24).
Furthermore, for all three groups of training data, Model 3
((2, 0, 9) X (O, 1, 1)168) and Model 4 ((2, O, 1) X (0, 1, 1)168)
with the 168-hour period always lead to better prediction than
Model 1 and Model 2 with the 24-hour period. The 24-hour
period models assume that the traffic is relatively constant
for a weekday, while the 168-hour period models take into
account traffic variations during a week. To predict traffic on
a Wednesday based on Tuesday’s data is not as accurate as
predicting Wednesday’s traffic based on the data of previous
Wednesdays. However, the computational cost of identifying
and forecasting 168-hour period models is often over 100 x
CPU utilization required for the 24-hour period models.

B. Cluster Based Traffic Prediction

A key assumption of the prediction based on the aggregate
traffic is the constant number of network users and steady
behavior patterns. However, this assumption does not hold in
the case of network expansions. Hence, we propose here a
cluster-based approach to predict the overall network traffic
by aggregating traffic predicted for individual clusters.

Comparison of prediction based on three clusters and pre-
diction based on aggregate traffic is shown in Table VI.
For each of the three clusters of talk groups, we em-
ployed SARIMA models (2,0,1) x (0,1,1)24 and (2,0,1) x
(0,1,1)16s to predict traffic based on various number of train-
ing data. Predictions for the three clusters are then combined to
predict the overall network traffic. Note that the nmse > 1.0
for clusters 1 (tests 3, 4, and 9) and for cluster 2 (test 3) implies
that the prediction results are worse than prediction based on
the mean value of the past data. If the mean value prediction
is adopted for clusters 1 and 2 in Test 3, and cluster 1 in Test
4, we obtain better prediction results shown in the column
“nmse optimized” (optimized cluster-based prediction). (The
non-optimized cluster-based prediction performs worse than
the aggregate-traffic-based prediction.) Test 1, 2, 7, 8, 10,
and 11 show that prediction based on clusters performs better
than the prediction based on aggregate traffic. In our tests,
57% of the cluster-based predictions perform better than
the aggregate-traffic-based prediction with SARIMA model

TABLE VI
SUMMARY OF THE PREDICTION BASED ON USER CLUSTERS. MODEL
(2,0,1) x (0,1,1). CLUSTERS ARE LABELED CL.1, CL.2, AND CL.3.

Smn nmse nmse nmse nmse
# cl.l cl.2 cl.3 aggr. cl. opt.
1 24 240 24 0323 0548 0308 | 0.254 0.241 n/a
2 24 240 48 0.394 0712 0445 | 0343 0.332 n/a
3 24 1200 72 1.774 1976 0270 | 0.884  0.886 | 0.846
4 24 1200 96 1.319 0866 0260 | 0.611 0.613 0.610
5 241200 120 | 0.840 0.703 0245 | 0.463  0.467 n/a
6 24 1200 144 | 0.665 0.647 0236 | 0396  0.399 n/a
7 168 1008 336 | 0.616 0.466  0.190 | 0.285 0.260 n/a
8 168 1008 504 | 0.439 0.446  0.190 | 0.237 0.224 n/a
9 168 1176 24 | 3.401  0.747 0.168 | 0.365  0.507 | 0.436
10 | 168 1512504 | 0.348 0.375 0.155 | 0.180  0.178 n/a
11 168 1680 24 0.367 0.444 0.115 0.132 0.129 n/a
12 | 168 1680 48 | 0.380 0.467 0.095 | 0.114  0.116 n/a

(2,0,1) x (0,1,1)16s-

Additional advantage of the cluster-based prediction is the
ability to predict network traffic with variable number of users
as long as the new user groups could be placed into the
existing user clusters. The computational cost of forecasting
the network traffic is reduced to the number of clusters times
the prediction cost for one cluster.

V. CONCLUSIONS

We analyzed network traffic data from an operational net-
work. By applying the data mining techniques on the traffic
data, we discovered user clusters based on the patterns of
calling behavior expressed by the hourly number of calls. The
proposed cluster-based prediction produces comparable results
to prediction based on the aggregate traffic. It is applicable to
networks with variable number of users where the prediction
based on aggregate traffic could not be applied.
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