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Abstract— A method for the design of IIR digital filters with
pole radius constraint based on the argument principle (AP) from
complex analysis is proposed. Unlike the stability constraints
available in the literature which are sufficient but not necessary
stability constraints, the proposed AP-based stability condition
is both sufficient and necessary. We show that weighted least-
squares and minimax designs of robustly stable IIR filters can be
accomplished in convenient convex programming settings where
the proposed stability criterion can easily be incorporated as a
single equality constraint that does not depend on any parameters
other then filter’s denominator coefficients. Design examples are
presented to illustrate the usefulness of the proposed algorithms.

I. INTRODUCTION

A critical problem encountered in the design of IIR filters is
stability. The stability problem cannot be adequately addressed
by simple stabilization techniques such as replacing the poles
of the transfer function outside the unit circle with their
reciprocals if the passband phase response of the filter is a
part of the design considerations. A recent research trend is to
deal with the design problem in a constrained optimization
setting, see for example [1]–[7] and the references cited
therein. Among other things, a successful recent attempt to
use complex-analysis tools to tackle the stability problem
is described in [3] where Rouché’s theorem [8] is applied
to derive a family of linear constraints that ensures filter’s
stability. The method of [3] has however two drawbacks:
the linear constraints depends on a parameter θ which varies
continuously on [0, π] that leads to a complicated semi-infinite
optimization problem and, in addition, Rouché’s theorem is
merely a sufficient (but not a necessary) condition for the sta-
bility, the use of which may therefore exclude good designs. A
method based on positive realness (PR) which offers improved
stability region is proposed in [5]. Again the PR-based stability
condition is a sufficient condition.

In this paper, we derive a stability criterion based on the
argument principle from complex analysis [8]. The stability
criterion obtained is a single equality constraint that does not
depend on any parameters other than the denominator coef-
ficients. Weighted least-squares and minimax designs of IIR
filters are formulated as iterative convex quadratic and second-
order cone programming problems [9], respectively, where
the proposed stability criterion can readily be incorporated to

ensure stability. Design examples are presented to illustrate
the proposed algorithms.

II. A NEW STABILITY CRITERION

Consider monic polynomial

b(z) =
m∑

i=0

biz
m−i, b0 = 1 (1)

Polynomial b(z) is said to be r-Schur if all the zeros of b(z)
lie strictly inside circle C = {z : |z| = r} where r ≤ 1. It is
well known [8] that b(z) is r-Schur if and only if
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where the integral is carried out counterclockwise along C.
Note that
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Therefore, b(z) is r-Schur if and only if the total change
in argument argb(z) is equal to 2πm when z moves along
C counterclockwise. The above is essentially a statement of
the argument principle (AP) [8]. In what follows, the AP is
applied to derive a stability criterion suitable for the analysis
and design of IIR digital filters with robust stability.

If we define crm(θ) = rm cosmθ, srm(θ) = rm sinmθ,
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and D(θ, r, b) = d[arg b(rejθ)]/dθ, then along C polynomial
b(z) can be expressed as

b(rejθ) = br(θ, r) + jbi(θ, r)
where

br(θ, r) = crm(θ) + bT cr(θ)
bi(θ, r) = srm(θ) + bT sr(θ)



and D(θ, r, b) is given by

D(θ, r, b) =
br(θ, r)tr(θ) + bi(θ, r)ti(θ)

b2
r(θ, r) + b2

i (θ, r)
(4)

with tr(θ) = mcrm(θ) + bT s′
r(θ), ti(θ) = msrm(θ) −

bT c′r(θ).
Notice that D(θ, r, b) is an even function of θ. This in

conjunction with (2)–(4) imply that b(z) is r-Schur if and
only if

1
π

∫ π

0

D(θ, r, b)dθ = m (5)

Two remarks are now in order. First, for a given radius
r ≤ 1, the stability condition in (5) is a single equality
constraint that does not depend on parameter θ (because of
the integration there) and the constraint is explicit in terms
of the polynomial coefficients. Second, if b(z) is known and
r-Schur, then perturbed polynomial b̂(z) + β(z) with β(z) =
β1z

m−1 + · · · + βm remains r-Schur if and only if

1
π

∫ π

0

D(θ, r, b + β)dθ = m (6)

where β = [β1 . . . βm]T . With b and r fixed, (6) is an
explicit sufficient and necessary condition for β to ensure the
r-Schurness of b(z) + β(z).

If we define function N(b, r) as

N(b, r) =
1
π

∫ π

0

D(θ, r, b)dθ

then the analysis above shows that N(b, r) is an integer-
valued piecewise-constant function in the entire parameter
space where b resides. The stability condition in (6) can now
be stated as N(b + β, r) = m for a stable perturbation β.
For illustration purposes, we follow [5] to consider b(z) =
z2 − 0.5z + 0.6 and let b = [−0.5 6]T , β = [β1 β2]T .
It can be verified that b(z) is stable and b̃(z) = b(z) +
β(z) = z2 + (β1 − 0.5)z + (β2 + 0.6) is stable if and only
if β2 < 0.4, β1 − β2 < 2.1, and β1 + β2 > −1.1. The
stability region in this case is a triangle shown in Fig. 1.
Function N(b + β, r) is then evaluated in the rectangular
region {−1.5 ≤ β1 ≤ 2.5, −1.6 ≤ β2 ≤ 0.4}, and the
evaluation results are depicted in Fig. 2.

It is observed that the region where N(b+β, 1) assumes the
value of 2, i.e., the region where the corresponding polynomial
is 1-Schur, is identical to the triangle in Fig. 1. The stability
regions for this particular b(z) obtained based on Rouché’s
theorem and positive realness are proper sub-regions inside
the triangle and can be found in [5].

III. WEIGHTED LEAST-SQUARES DESIGN

Consider the transfer function of an IIR digital filter

H(z) =
a(z)
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(7)
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Fig. 1. Stability region for b̃(z).
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Fig. 2. Function N(b + β, 1).

where 0 ≤ m ≤ n. The filter is assigned (n − m) poles at
the origin as it was found beneficial for the design of several
types of digital filters [3]. The frequency response of the filter
can be expressed as H(ω, x) = Hr(ω, x) + jHi(ω, x) with

Hr(ω, x) =
aT ĉ(ω)br(ω, 1) + aT ŝ(ω)bi(ω, 1)

b2
r(ω, 1) + b2

i (ω, 1)
(8a)

Hi(ω, x) =
aT ŝ(ω)br(ω, 1) − aT ĉ(ω)bi(ω, 1)

b2
r(ω, 1) + b2

i (ω, 1)
(8b)
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and b, br(ω, 1), and bi(ω, 1) are defined in (4).
In a weighted least squares design, one seeks an H(z) in



(7) that solves the constrained problem

minimize
x

∫ π

−π

W (ω)|H(ω, x) − Hd(ω)|2dω (9a)

subject to: b(z) is r-Schur (9b)

where Hd(ω) = Hdr(ω) + jHdi(ω) denotes a desired fre-
quency response and W (ω) ≥ 0 is a known weighting
function. In the kth iteration of an iterative solution process,

H(ω, xk + δ) ≈ H(ω, xk) + gT
k (ω)δ

where
gk(ω) = ∇H(ω, xk) = ∇Hr(ω, xk) + j∇Hi(ω, xk)

= gkr(ω) + jgki(ω)

Hence
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where

Gk(ω) = W 1/2(ω)
[

gT
kr(ω

gT
ki(ω)

]

ek(ω) = W 1/2(ω)
[

ekr(ω)
eki(ω)

]
ekr(ω) = Hr(ω, xk) − Hdr(ω)
eki(ω) = Hi(ω, xk) − Hdi(ω)

δ =




α0
...

αn

β1
...

βm




=
[

α
β

]

In this way, the problem in (9) is reduced to

minimize
δ

∫ π

−π

‖Gk(ω)δ + ek(ω)‖2
2dω (11a)

subject to: ‖α‖, ‖β‖ small (11b)

b(z) is r-Schur (11c)

whose solution, δk, is in turn used to update xk to xk+1 =
xk + δk. This process continues until ‖δk‖2 becomes smaller
than a prescribed tolerance ε. Notice the constraints on the
magnitude of α, β as imposed in (11b) — they are needed to
validate the linear approximation of H(ω, xk + δ). The norm
in (11b) can be either 2-norm or infinity-norm.

A natural way to deal with (11c) that is consistent with
linearly approximating H(ω, xk + δ) is to consider the linear
approximation of the stability condition in (6), i.e.,
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which in conjunction with (5) leads to vT (r, bk)β = 0 with

v(r, bk) =
1
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∇D(θ, r, bk)dθ

By employing the infinity-norm in (11b), problem (11) now
becomes

minimize δT P kδ + 2δT pk (12a)

subject to: |αi| ≤ qa i = 0, . . . , n (12b)

|βi| ≤ qb i = 1, . . . , m (12c)

vT (r, bk)β = 0 (12d)

where

P k =
∫ π

−π

GT
k (ω)Gk(ω)dω

pk =
∫ π

−π

GT
k (ω)ek(ω)dω

which is obviously a convex quadratic programming (QP)
problem.

IV. WEIGHTED MINIMAX DESIGN

The design problem in this case can be described as

minimize
x

maximize
−π≤ω≤π

W (ω)|H(ω, x) − Hd(ω)| (13)

Here an iterative design strategy similar to that in Sec. III
can be adopted to yield the following optimization problem
for vector δk that updates the kth intermediate design xk to
xk+1 = xk + δk:

minimize η (14a)

subject to: ‖Gk(ωi)δ + ek(ωi)‖2 ≤ η (14b)

for i = 1, . . . , K

‖α‖2 ≤ qa, ‖β‖2 ≤ qb (14c)

vT (r, bk)β = 0 (14d)

where a dense grid points {ωi, i = 1, . . . , K} ⊂ [−π, π] are
used in (14b) and 2-norm is used to measure the smallness
of vectors α and β in (14c). If we treat the upper bound
η as an auxiliary variable (in addition to δ), then (14) is a
second-order cone programming (SOCP) problem [9]. Notice
that unlike the QP problem in (12) where the total number of
(linear) constraints is 2(n+m)+3, the number of constraints
involved in (14) is usually much greater as K >> (n + m).

V. DESIGN EXAMPLES

As the first example, the weighted LS algorithm proposed
in Sec. III was applied to design a lowpass IIR filter with
n = 15, m = 4, normalized passband edge fp = 0.4, and
normalized stopband edge fa = 0.56. The desired passband
group delay was set to τ = 12. The pole radius was set to
r = 0.84, the bounds in (12b) and (12c) were set to qa = 0.4,
qb = 0.35, and the weighting function

W (ω) =

{
1 for ω ∈ [0, fp]

2.6 for ω ∈ [fa, 1]

was used. The algorithm was implemented using MAT-
LAB where the key command for solving problem (12) is
quadprog. With ε = 10−6, it took the algorithm 15 iterations



and 0.5 seconds CPU time on a Pentium 4 3.3GHz PC to
converge to the solution. The performance of the IIR filter
obtained was evaluated in terms of the L2 error in passband
e2p = 0.8187 × 10−5, L2 error in stopband e2a = 0.1420 ×
10−5, average relative deviation in passband group delay
egd = 0.0028 and maximum modulus of the poles = 0.8309.
The filter’s performance was compared with a counterpart IIR
filter reported in [3] with the same n, m, fp, fa, and τ as
above. The counterpart filter of [3] was evaluated in terms of
e2p = 0.8720 × 10−5, e2a = 0.1483 × 10−5, egd = 0.0028
and maximum modulus of the poles = 0.8263. The amplitude
responses and passband group delays of these two filters
are depicted in Fig. 3 with solid line representing the filter
obtained by the proposed method and dashed line for the filter
of [3].
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Fig. 3. Amplitude responses, passband ripples and passband group delays
for the first example.

In the second example, the weighted minimax algorithm
described in Sec. IV was applied to design a lowpass IIR filter
with n = m = 12, fp = 0.5, fa = 0.6, and τ = 15.9. The
pole radius was set to r = 0.94, the bounds in (14c) were set
to qa = 1.62 and qb = 1.55, and W (ω) ≡ 1 for ω ∈ [0, fp]
and [fa, 1]. The algorithm was implemented using MATLAB
toolbox SeDuMi version 1.1R2 [11]. With ε = 2 × 10−5 and
K = 200, it took the algorithm 16 iterations and 4.77 seconds
CPU time to converge to the solution whose performance was
evaluated in terms of maximum passband ripple erp = 0.0137,
minimum stopband attenuation era = 37.2051 dB, average
relative deviation in passband group delay egd = 0.0088, and
maximum modulus of the poles = 0.9327. The performance of
the well-known Deczky filter [10] with the same n, m, fp, fa,
and τ was used as the benchmark for comparison purposes.
The Deczky filter offers erp = 0.0549, era = 31.7603, egd =
0.0233, and maximum modulus of the poles = 0.8929. The
amplitude responses and passband group delays of these two
filters are given in Fig. 4 with solid lines for the IIR filter
obtained by the present method and dashed lines for the
Deczky filter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−40

−20

0

Amplitude responses

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.08
−0.06
−0.04
−0.02

0
0.02

Amplitude ripple in passband

(b)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
12

14

16

18

20
Group delay in passband

(c)

S
am

pl
es

Fig. 4. Amplitude responses, passband ripples, and passband group delays
for the second example.
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