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Abstract-We describe a neuromorphic chip with a two- 1 Neuron 7 Diffuser
layer excitatory-inhibitory recurrent network of spiking neurons
that exhibits localized clusters of neural activity. Unlike other s
recurrent networks, the clusters in our network are pinned Vspk
to certain locations due to transistor mismatch introduced in
fabrication. As described in previous work, our pinned clusters - - g
respond selectively to oriented stimuli and the neurons' preferred I
orientations are distributed similar to the visual cortex. Here we
show that orientation computation is rapid when activity alter- |11
nates between layers (staccato-like), dislodging pinned clusters, Synapse Network
which promotes fast cluster diffusion. [f -chipinputs

I. PATTERN-FORMING RECURRENT NETWORKS E

A 2-D recurrent network of spiking neurons with Mexican
hat connectivity (local excitation and distal inhibition) can E21
exhibit clusters of activity when the feedback is sufficiently
strong. These clusters are an emergent property of the network t > T
and are identified by contiguous regions of activity surrounded
by dead zones (no activity). In a homogeneous network (i.e.,
neurons and their connections are all identical), the locations Fig. 1. Transistor implementations for a neuron, diffuser, and a synapse

of the clusters aeuoare shown together along with their input-output interactions; the network
of the clusters are unconstrained and have an equal likelihood panel shows how these individual blocks are organized into neural circuits.
of existing at any position. Therefore, clusters in a homoge- We refer to circuit parameters as typepar, where type specifies the section of
neous network move in a random walk, constrained only by the neural circuit, and par specifies the circuit parameter (e.g., the excitatory

' ~~~~~~~cellsynapse parameter A is referenced as EA).
their interactions with nearby clusters [1].

In contrast, networks with heterogeneous neurons tend to
bias the locations where clusters reside. Clusters do not wander
freely~~~~~~~~~~~~bu.rntaindt h oain htmxmz Previous attempts to model such networks in software havefreely bt asacrificed low-level details that are known to affect clustertheir local recurrent feedback. One intriguing possibility is dynamics (e.g., they replace spiking with rate-based equa-that the interactions between spatio-temporal input patterns tions) [4], and have explored only a handful of network

(e.g., visual scenes) and these pinned clusters can process states [2], [1]. For these reasons, we have chosen to build our
information. For example, it has been shown that oriented network in silicon using a neuromorphic implementation [5].
stimuli are able to shift the clusters away from their preferred
locations to produce orientation selective responses whose Thsapochsteadnagof oeriginel-m,
dlstributon resembles corical maps of preferred orientaihon 11 retaining important low-level details [6] (i.e., electronic(P0)rib[2],n[ Tesemblemcortingly cmapsofplc edetas ofientatio currents flowing through MOS transistors are analogous to(PO) .2.3The.seeminglycomplicatedtaskofassigning ionic currents in a biological membrane), and III supportingsimilar POs to nearby neurons is cleverly achieved by simply large-scale networks 10, 000 neurons).
building an imprecise, recurrent network.Transformingfnixpred-patternise,rcre inetworkasmothlchagOur two-layer excitatory-inhibitory recurrent network isTransforming fixed-pattern noise into a smoothly changing bitfo aoia rnitrcrut htcpuetebhv
feature map is an impressive feat, but this transformation is

ior of their biological counterparts (Fig. 1). These circuitstpoorly understood. In particular, it is not known how cluster C
dynamics, which can range from fluid (mobile clusters) to which are designed to operate in the subthreshold region,
crystalline (immobile clusters), influence P0 map creation. We perform the following functions:
address this issue by characterizing how clusters diffuse over a . A neuron integrates excitatory and inhibitory currents
range of network states and by examining the speed at which on its membrane capacitor and generates a spike (brief
orientation maps converge for two disparate diffusion rates. voltage pulse) after reaching threshold [7].

Exploring a detailed, large-scale recurrent network over . A diffuser, which models axonal arbors, spreads synaptic
a wide range of network parameters is a computationally current to local regions in space with exponential de-
daunting task that is poorly suited for software modeling, cay [8].
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* A synapse converts spikes into postsynaptic currents that
decay exponentially [3].

A computational block of our network, which is tiled across 40
the chip, consists of an excitatory (EXC) and an inhibitory 0

(INH) neuron reciprocally connected through synapse and 0 U
diffuser circuits (Fig. 1 network). Note that feedback excitation 30 C

(not shown) is implemented by routing EXC spikes trans-
mitted off-chip back into neighboring synapse circuits (see

20

Section II). 20

II. MODEL IMPLEMENTATION 10
10 Q

We implemented our recurrent network in silicon using a
0.25,um 5-metal layer CMOS process. The fabricated chip
consists of a 2-D core of 48 x 48 blocks, surrounded by asyn- 10 20 30 40
chronous digital circuitry that transmits and receives spikes,
encoded using the address-event representation (AER), in real- Fig. 2. Contours of EXC cell activity (clusters) are shown for two lOms
time [9]. Our custom chip has - 460,000 transistors packed in intervals 50ms apart (thin and thick lines). In this example, the network

2 parameters (in volts) are: for INH, Sr= 1.844, Isg = 1.897, Ite = 2.374,
10 mm2 of silicon area for a total of 9,216 neurons (only half IA 1.45, Itc = 0.061; for EXC, Esr 2.046, Esg = 2.045, Ete = 2.4,
of which are used in this paper for the recurrent network). EA 1.855, Et, = 0.052; for their interaction, E21sr = 2.051, E21,g =

ToimPlement spatial interactions in our network, we use 2.098, E21te = 2.387, E21A = 1.602, E21tI = 0.05, and Vdd 2.5. Each
To i e t al tc s o ncell in the network is driven with a 75Hz poisson background input. These

diffuser circuits to spread post-synaptic currents (described setting are used throughout the paper except where noted.
previously). However, we must use caution when diffusers
implement connectivity between cells in the same layer. The
caveat is that in addition to spreading current to neighboring Our goal is to characterize the dynamics observed in our
nodes, they also implement an autapse (self-connection) that heterogeneous network over a range of parameters. To ac-
is weighted by the peak of the exponential. For this reason, we complish this, we first introduce metrics that quantify how
implement EXC to EXC connections through a FPGA-RAM clusters diffuse in time. We then compare cluster dynamics
interface, which generates multiple events targeted to neigh- over a range of different network states a daunting task
boring neurons (whose addresses are stored in the RAM). Self- considering the extent of the parameter space. We whittle the
excitation is still present through neighboring diffuser nodes astronomic parameter space down to an interesting subspace
(see Fig. 1), but the strength of the autapse is significantly by taking advantage of the real-time visualization offered in
reduced. our neuromorphic system. Finally, we gauge the speed of
A bi-directional AER-USB (universal serial bus) interface computation by exploring how cluster diffusion relates to PO

allows us to view, process, and save neuron activity from our map convergence.
chip in real-time while simultaneously sending events (i.e.,
afferent spikes) to drive the network. Utilizing the USB 2.0 A Confned cluster diffusion
high-speed standard (asynchronous mode), we achieved - 7 We characterize our network dynamics by measuring the
million address-events/sec. With a custom GUI, we were able mean-squared displacement of clusters KA2r) over time. The
to interact with our network in real-time by: I changing the measurement is performed as follows: First, we identify the
level of input activity to the chip with a keystroke, II viewing centers of clusters for two frames separated by time to.1 Next,
spike rasters to gauge the extent of network synchronization, we calculate the pair-wise distances of all the centroids from
III viewing network activity over space, and Iv determining one frame to the next (Fig. 3). The mean of this distribution,
when neural activity becomes unstable by monitoring the KA2r(to)), is calculated using the region around the initial
most-excitable cells. peak (Fig. 3, lighter region), which corresponds to local cluster

diffusion (explained below). Repeating this measurement for
III. CLUSTER DYNAMICS different values of t, we obtain KA2r(t)) (Fig. 3 Inset).

The multiple humps observed in the lA\r(to) distribution
Our network exhibits spatio-temporal patterns in certain pa- (Fig. 3) are characteristic of clusters diffusing in a confined

rameter regimes. In particular, when local feedback excitation area. The initial peak is the result of clusters moving a small
(EA) is scaled relative to distal inhibition (IA), clusters Of distance (or not moving at all), whereas the nearby trough
neural activity form across the network (Fig. 2). These clusters
are dynamic: over time they can change shape, coalesce with lCutr are identified by finding contiguous regions of activity within a
neighbors, disappear, or diffuse. However clusters do not move frame (i.e., cells that have at least half of their neighbors active). Then, the

center of mass of each cluster is computed, where the mass of each cell isfar; this confinement Is the result of transistor mismatch. With- determined by its firing-rate. We cap the max firing-rate to 500Hz (i.e., 5
out this heterogeneity, clusters have no preferred locations, spikes in a lOins frame), which limits the contribution of over active cells.
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Fig. 3. The distances that clusters travel in lOms, or lAlr(lOms) (same Fig. 4. Chip behaviors (numbered) are shown for different voltages IA and
network state as in Fig. 2). We show Ai r(lOms) instead of A2r( lOms) be- EA. Corresponding diffusion rates D are shown to the right. Note that lowering
cause the former distribution is easier to visualize. All computations however the voltage corresponds to increased synaptic strength (since A connects to a
use A2 r (t). Inset Mean-squared displacement, (A2r(t)), only considering PMOS transistor).
the region around the initial peak. The slope of the fit (D) is 43.02 pix2/s.

accomplish this by first finding a suitable network operating
represents distances where clusters are unlikely to travel. The point in the high-dimensional parameter space with interesting
n subsequent peaks correspond to the mean distance between cluster dynamics; the chosen settings are indicated in Fig. 2.
n-th nearest neighbors; the peaks exist because, on average, Our real-time GUI facilitated this search since we were able
many clusters are consistently the same distance from each to monitor relevant network properties (e.g., network stability)
other. In this paper, we only consider the distribution near the while tuning the parameters.
initial peak. Having found a suitable operating point, we now constrain

The shape of K,A2r(t)) (inset of Fig. 3) provides further our analysis to the post-synaptic current amplitudes (EA and
evidence that, in this particular network state, clusters diffuse IA), for the simple reason that these two parameters sample a
in a confined area. Indeed, over short time intervals (10 to wide-range of different dynamics (from inspection). Because
50ms), the mean-squared displacement varies linearly with two parameters still constitute a large space, we further reduce
time. In other words, the expected distance a cluster will travel their range by cutting out regions where: I clusters do not self-
is proportional to how long we wait (up until - 50ms). We sustain for more than 10 seconds in response to an impulse
denote the slope of this linear region as D (traditionally called (no hysteresis); II clusters do not pack the entire network (few
the diffusion constant). For longer time intervals (> 90ms), the clusters); and III more than 28 neurons have an average firing-
expected distance tends to saturate. This behavior is indicative rate above 1,000Hz (unstable) (I and III are demarcated by
of a confined cluster; it will never travel beyond a certain x's in Fig. 4). It is important to note that these regions are
distance regardless of how long we wait. An analogy between empirically defined and do not imply underlying bifurcations.
cluster dynamics and particles vibrating in a crystalline lattice Having carved out a parameter range for EA and IA, we
can be drawn but we must be careful not to take the analogy compute D for points in that range (Fig. 4). For each point
literally. Unlike particles, clusters are not required to follow KA2r(t)) has been measured over lOms to 150ms in lOms
physical laws (e.g., the probability that a cluster must exist intervals. D is the slope of the linear fit from 10 to 50ms; the
somewhere is not required to be 1). lowest R2 (i.e., percentage of variance explained), considering
The method that we have described allows us to obtain the entire dataset, was 0.885.

D without explicitly tracking clusters through time. By us-
ing the distance distribution directly, we avoid the task of C. Orientation map convergence
characterizing non-diffusive cluster behavior. For instance, a We track PO maps over time in two different network states
cluster that vanishes (or merges with a neighbor) from one to gauge how cluster diffusion affects computational speed.
frame to the next does not affect the distance distribution near First, maps are computed by presenting four moving gratings
the initial peak; hence, non-diffusive behavior is automatically with orientations ranging from 0 to 135 degrees for 1,000
segregated from our analysis.2 seconds and then computing the vector sum the resulting

B. Dependence on network parameters angle is a neuron's PO (see [3] for an example). Next, we

Here weexporehowcluterdynmic, ad i paticlar compare short-term P0 maps (considering part of the trial)
. ' . ' . ~~~~~~~~~withthe final P0 map (entire trial); comparisons are made

the diffusion constant D, depend on parameter choices. We using a map similarity index (SI) that computes the normalized

2This method was inspired in part by Tristan Ursell's web document angle difference between maps, (adopted from [11]). An SI of
Diffusion of solid particles in viscous fluid, and by [10]. 1 signifies the maps have identical orientation preferences; 0.5
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Fig. 6. Spike rasters (left) for 10 EXC (green) and INH (black) neurons

Fig. 5. Map convergence rates, measured as the SI between short-term PO for two network states and their average AC's (right). AC is calculated by
maps and the final map, for two states. Fits for the first 10s of each state are considering EXC spikes over a 50s interval at a 0.1ms bin resolution; it is
shown, and extrapolated out to an SI of 0.9 (dashed lines). PO maps are also normalized for each neuron individually and averaged over 100 neurons.
shown for the time indicated by the A; colors are determined by each cell's
PO. Dark regions indicate cells that have not fired; note that more cells are
active when cluster diffusion is high. The cluster dynamics that we observed in our network,

quantified by the local diffusion constant D, ranged from 17
signifies no correlation (i.e., the average PO difference is 45 to 51 pix2/s. To reach the high-diffusion regimes, the network
degrees); and 0 signifies anti-correlation (i.e., the average PO operated with staccato-like interactions between EXC and INH
difference is 90 degrees). The convergence rates for the two neurons. We propose that this staccato activity state is one way
distinct network states 29 and 4 (red and blue traces in Fig. 5, to achieve cluster diffusion in the presence of heterogeneity.
respectively) show that greater cluster diffusion results in faster Furthermore, this staccato state could provide a way to balance
convergence. For example, the initial rate is 6.6 x 103 in SI/s computational speed and efficacy in a heterogeneous network.
(dashed red) when D = 51 pix2/s (state 29), whereas the rate ACKNOWLEDGMENT
is 3.8 x 10-3 (dashed blue) when D = 23 pix2/s (state 4). This work was supported by the DoD Multidisciplinary
We have shown that cluster diffusion (D) can influence map Univeredconvergence, but D only quantifies how far clusters diffuse rsity Research Research under Grant N000140110625.over time; the fundamental question of how clusters diffuse b
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