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Abstract— Reduced ordered Binary Decision Diagrams (BDDs)
are a data structure for efficient representation and manipulation
of Boolean functions. They are frequently used in logic synthesis
and formal verification. In recent practical applications, BDDs
are optimized with respect to new objective functions.
In 1986, Bryant showed that, dependent on a chosen variable
ordering, the size of BDDs can vary from linear to exponential.
In this paper we derive similar results for the sensitivity of BDDs
with respect to path-related objective functions. First, we provide
a theoretical view, giving examples for the large variation in the
maximal path length and the expected path length in BDDs. This
shows how important it is to choose a good or optimal variable
ordering.
Experimental results show the sensitivity of benchmark functions
with respect to all considered objective functions.

I. INTRODUCTION

Reduced ordered Binary Decision Diagrams (BDDs) were
introduced in [1] and are well-known from logic synthesis and
hardware verification.

Run time and space requirement of BDD-based algorithms
depend on the size of the BDD. However, this size is very
sensitive to a chosen variable ordering [1]: dependent on a
chosen variable ordering, the size of BDDs can vary from
linear to exponential. In general, determining an optimal
variable ordering is a difficult problem. It has been shown
that it is NP-complete to decide whether the number of nodes
of a given BDD can be improved by variable reordering [2].
For this reason, many heuristic methods to determine a good
ordering have been proposed, based on structural information
[3] or on dynamic reconstruction [4].

Similar questions arise for alternative, path-related objec-
tive functions. The optimization with respect to the number
of paths in a BDD has been studied in [5]: the number
of paths in a circuit derived from a BDD corresponds to
the number of paths in the BDD. It is proportional to the
number of faults under the path delay fault model. Hence
minimizing the number of paths can significantly reduce the
time for testing BDD circuits [6]. It also can be used for
minimizing Disjoint-Sum-Of-Products (DSOPs) [7] which are
used in the calculation of spectra of Boolean functions [8]
or as starting point for the minimization of Exclusive-Sum-
Of-Products (ESOPs) [8]: in a BDD for a Boolean function
f , each path to the 1-terminal corresponds to a (partial)
assignment to the variables, i.e. to a product of the literals
of f . The products derived from different paths are disjoint.
Collecting them in a sum yields a DSOP. The optimization
with respect to the Expected Path Length (EPL) has been

studied in [9], [10]. It is motivated by the reduction of the time
needed to evaluate many test vectors using BDDs in functional
simulation [11], [12]. Minimization of EPL as well as of the
Maximal Path Length (MPL) in BDDs is also motivated by
logic synthesis: first, every variable missing in a path of the
BDD corresponds to a don’t care. Thus shortening the EPL can
help providing don’t care values for minimization. Second, the
longest path in the BDD corresponds to the critical path in a
derived circuit. Hence minimization with respect to MPL/EPL
is expected to support synthesis approaches targeting the delay
of the resulting circuits [13]. The minimization of MPL has
been studied in [10], [14].

Good run times of all these applications can only be
achieved if the BDDs are optimized with respect to the new
objective functions. Hence it is crucial to understand in how
far these objectives depend on the variable ordering, i.e. the
sensitivity of the new objective functions must be studied.

This paper first gives a theoretical study of the sensitivity of
path-related objective functions for BDDs. For each criterion,
the sensitivity is stated as the largest known ratio of the
objective functions value for the worst-case and the best-
case BDD for one and the same function. The results are
constructive as example BDDs with the stated sensitivity are
given.

Experimental results give the discussed sensitivities for
benchmark functions. For this purpose, BDDs have been
maximized, then minimized with respect to the respective
objective functions and finally the resulting ratios have been
computed. The experiments clearly show a high sensitivity of
the benchmark functions. This demonstrates how important it
is to choose a good ordering during the respective applications.

II. BACKGROUND

Reduced ordered Binary Decision Diagrams (BDDs) are
directed acyclic graphs where a Shannon decomposition

f = xifxi + xifxi
(1 ≤ i ≤ n)

is carried out with each node. Each node v is labeled with
a Boolean variable in {x1, . . . , xn}. The variables are en-
countered at most once and in the same order, the “variable
ordering” denoted π, on every path from the root node to one
of the two terminal nodes. For a BDD F , a prefix π (e.g. πF )
expresses that F respects the ordering π.

Note that reduced diagrams are considered, derived by
removing redundant nodes and merging isomorphic subgraphs.
In the following we assume shared BDDs with Complement



Edges (CEs) [15] without mentioning it further (and without
using CEs in the illustrations). Note that all results reported
here directly transfer to BDDs without CEs. The root nodes
of a BDD always have external references, i.e. they represent
user functions. Together with other nodes representing user
functions they constitute the set of output nodes. For more
details see [1].

Paths in a BDD start at a root node and end at a terminal
node. The length of a path is the number of inner nodes on
the path. Next, path-related objective functions are defined: the
EPL of a BDD expresses the expected number of variable tests
needed to evaluate an input assignment along a path from an
output node to a terminal node. This number is determined as
the average path length under all such input assignments. For a
BDD F it is denoted ε(F ). For a BDD node v, ε(v) is the EPL
of the sub-BDD rooted at v. In case of a single-rooted BDD
F , the EPL is simply the ε-value of the root node, otherwise it
is the average of the weighted1 ε-values for all output nodes.
Another path-related objective function for BDDs is the MPL:
let µ(F ) denote the maximal length of a path from an output
node to a terminal node.

III. RELATED WORK

It is well-known that the size of BDDs is often very sensitive
to a chosen variable ordering. In [1] an example has been
given where the BDD size varies from linear to exponential
dependent on the ordering of the variables (see Fig. 1). An
analogous result on the sensitivity of the number of paths in
BDDs has been given in [5]. Our work extends the scope of
these results to other path-related criteria, namely expected
and maximal path length. Recently, in [16] a study on the
Average Path Length (APL2) in BDDs states best APLs under
all orderings for specific functions (e.g. n-input AND/OR) and
compares the expected value of APLs for classes of functions
to the maximum APL for each class. In contrast, our study
focusses on the largest observable ratio of maximum and
minimum EPL for one and the same function.

IV. SENSITIVITY

In this section, we give results similar to [1], [5] for the
sensitivity of the EPL and MPL in BDDs: in essence, there
are n-ary BDD functions for which the EPL under different
orderings varies by a factor of Θ(n). On the other hand, the
variation of the MPL for certain BDD functions under different
orderings still is up to a factor of Θ(

√
n). This shows how

important it is to determine a good ordering for the new path-
related objective functions.

Lemma 1: Let f : Bn2 → B be defined as

f =
n∑

i=1

i−1∏

k=1

xk ·
n−1∏

k=0

xk·n+i.

Let F be a BDD representing f and let the variable orderings

1The weight equals the number of external references to the output node.
2In the case of single-output functions, the APL coincides with the EPL.
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by the constant 6.
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(b) EPL is greater than n.

Fig. 1. Two BDDs for f = x1 · x2 + x3 · x4 + . . . + x2n−1 · x2n.

π1, π2 be given as

π1 = x1, xn+1, . . . , x(n−1)·n+1, x2, xn+2, . . . ,

x(n−1)·n+2, . . . , xn, x2·n . . . , xn2 and

π2 = x(n−1)·n+1, x(n−2)·n+1, . . . , x1, x(n−1)·n+2,

x(n−2)·n+2, . . . , x2, . . . , xn2 , x(n−1)·n, . . . , xn.

It is

µ(π1F ) = 2 · n − 1, and

µ(π2F ) = n2.
The BDD π1F is shown in Fig. 2(a). As illustrated in

Fig. 2(b) it can be transformed into π2F by a series of
function-preserving variable swaps [17], [4]. This results in
the BDD given in Fig. 2(c). Along the thickened edges, the
longest paths traverse 2 · n − 1 and n2 edges, respectively.

Lemma 2: Let f : B2·n → B; (x1, x2, . . . , x2n) �→ x1 ·x2+
x3 · x4 + . . . + x2·n−1 · x2·n. Let the variable orderings π1, π2

be given as

π1 = x1, . . . , x2·n, and

π2 = x1, x3, . . . , x2·n−1, x2, x4, . . . , x2n.

It is

ε(π1F ) < 6, and

ε(π2F ) > n.
The BDD π1F is shown in Fig. 1(a). Recently, a similar result
has been shown for the APL by the use of generating functions
and differentiation [16] which is not needed in our proof: using
a recurrent definition of ε(v) [18], ε(π1F ) can be expressed as
a geometric series with the closed form 6 · (1 − (

3
4

)n)
. The

BDD π2F is shown in Fig. 1(b). Along all paths from the root
node to the terminal nodes, at least the n variables with an
odd subscript are tested. Hence, ε(π2F ) > n follows.
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(c) Maximal path length n2.

Fig. 2. A worst-case example for the sensitivity of the MPL in BDDs.

V. EXPERIMENTAL RESULTS

In this section we present the results of an experimental
study on the sensitivity of benchmark functions. From the logic
level description of the circuits of the LGSynth93 benchmark
set [19], BDDs have been built. Afterwards, the variable
ordering of the initial BDDs has been altered in order to
maximize or minimize the following objective functions: MPL,
EPL, and the number of paths in BDDs. For this purpose,
the sifting approaches as given in [10] have been used. Note
that these approaches do not yield exact solutions as they are
faster heuristic approaches based on dynamic reordering [4].
Obviously, the minimization methods can also be used for
maximization with only minor changes.

To put up a testing environment, all algorithms have been
integrated into the CUDD package [20] and were tested in the
same system environment. We used an AMD64 3500+ system
with a CPU running at 2.2 GigaHz with a main memory of
1 GigaByte for our experiments. A time limit of 36,000 CPU
seconds has been applied. Due to space limitation and since we
are only interested in the sensitivity, no computation times or
memory requirements of the algorithms are given here. Instead
we refer to [10] for detailed information about the used sifting
modifications.

In a series of experiments, the sensitivity of BDDs for
benchmark functions with respect to the three objective func-

tions has been determined. The results are given in Table I.
In three cases the run time of the optimization exceeded the
predefined time limit. The numbers in brackets give the last
(highest) observed values for these cases. In the first column
the name of the function is given. Column in denotes the
number of inputs of a function. The next three multi-columns
MPL, EPL, and # paths give the maximal/minimal observed
function values of the objective functions MPL, EPL and
number of paths in BDDs, respectively, as well as the ratio of
maximal and minimal value, i.e. the sensitivity. Each multi-
column consists of the corresponding three sub-columns max,
min, and sens., respectively.

As the results show, the sensitivity of the considered func-
tions stays below the upper bounds stated in Section IV.
However, still variations as high as a factor of two can be
observed (e.g., see dalu). Similar results have been obtained
for the other objective functions: the variation in EPL can be
as high as a factor of five (e.g., see dalu). For the number
of paths the theory states the existence of exponential ratios.
This is confirmed by the experiments: six benchmark functions
(c3540, c880, dalu, k2, rot, s838.1) show sensitivities of
several orders of magnitudes (e.g., for s838.1 a sensitivity of
1.8 · 1012 has been observed).



TABLE I

SENSITIVITY OF BENCHMARK FUNCTIONS WITH RESPECT TO DIFFERENT OBJECTIVE FUNCTIONS

name in MPL EPL # paths
max min sens. max min sens. max min sens.

apex6 135 24 20 1.2 4.87 2.33 2.09 105935 822 128.87
apex7 49 24 19 1.26 6.33 2.25 2.81 97067 605 160.44
b9 41 14 13 1.07 4.36 2.65 1.65 1109 245 4.53
c1355 41 41 41 1.00 35.18 20.82 1.72 (1308723511296) 336846811136 (3.89)
c3540 50 (39) 30 (1.30) (20.88) 9.81 (2.13) 289570968908 5448959 53142.44
c499 41 41 41 1.00 34.93 20.34 1.72 1350272286720 351879196672 3.84
c880 60 45 41 1.10 11.50 4.82 2.39 327753942183 1034704 316761.07
cht 47 6 4 1.5 3.15 2.06 1.53 124 81 1.53
dalu 75 (47) 24 (1.96) 26.40 4.94 5.34 9697774296 2298 4220093.25
example2 85 16 14 1.14 4.33 2.18 1.99 1621 384 4.22
frg2 143 25 20 1.25 6.61 2.32 2.85 142061 5846 24.30
i3 132 32 32 1.00 12.49 4.46 2.80 262148 262148 1.00
i5 133 19 19 1.00 7.00 1.98 3.54 22453 370 60.68
i6 138 5 4 1.25 3.99 3.05 1.31 486 270 1.80
i9 88 13 12 1.08 10.88 4.96 2.19 92470 2320 39.86
k2 45 39 24 1.63 12.23 4.01 3.07 3527535452 1481 2381860.53
rot 107 60 57 1.05 7.61 3.08 2.47 5898224798799 17824477 330905.91
s641 54 27 25 1.08 6.30 2.65 2.38 72066 1700 42.39
s713 54 27 25 1.08 4.50 2.65 1.69 72066 1700 42.39
s838.1 66 66 38 1.73 4.34 2.92 1.49 1104017058104789 593 1861748833228.99
x1 51 23 22 1.04 5.09 2.67 1.90 62817 1553 40.45
x3 135 24 20 1.20 4.88 2.34 2.09 126320 916 137.90
x4 94 15 15 1.00 4.72 2.39 1.97 3794 687 5.52

VI. CONCLUSION

Recent practical applications have raised the discussion of
new path-related objective functions for BDDs.

In this paper, the sensitivity of BDDs to variable ordering
with respect to path-related objective functions has been inves-
tigated. A result of Bryant, 1986, has been extended to the new
objective functions. Examples for the large variation of the
maximal path length and the expected path length, dependent
on the chosen variable ordering, have been given. Experiments
show that BDDs for benchmark functions can be very sensitive
for all optimality criteria, confirming the obtained theoretical
results.
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