
On the Hardware Reduction of z-Datapath of Vectoring CORDIC

R. Stapenhurst*, K. Maharatna**, J. Mathew*, J.L.Nunez-Yanez* and D. K. Pradhan*
*University of Bristol, Bristol, UK

**University of Southampton, Southampton, UK
km3@ecs.soton.ac.uk

Abstract— In this article we present a novel design of a hardware
optimal vectoring CORDIC processor. We present a mathematical
theory to show that using bipolar binary notation it is possible to
eliminate all the arithmetic computations required along the z-
datapath. Using this technique it is possible to achieve three and 1.5
times reduction in the number of registers and adder respectively
compared to classical CORDIC. Following this, a 16-bit vectoring
CORDIC is designed for the application in Synchronizer for IEEE
802.11a standard. The total area and dynamic power consumption
of the processor is 0.14 mm2 and 700μW respectively when
synthesized in 0.18μm CMOS library which shows its effectiveness
as a low-area low-power processor.

I. INTRODUCTION
The vectoring mode of CoOrdinate Rotation DIgital

Computer (CORDIC) algorithm is an effective means for
computation of the magnitude and phase angle of a vector [1]. In
this mode of operation, the y component of the input vector is
forced to zero using iterative vector rotation in a to and fro
manner through a set of elementary rotation angles. At the end,
the magnitude value and the accumulated angle (the phase angle)
are available as the x and z component of the output. In terms of
hardware, this vector rotation is nothing but a series of simple
shift-and-add operations and the resulting structure is very
hardware economical. Owing to its attractiveness it has been
incorporated in several DSP and communication systems and a
large volume of research work has been dedicated to improve its
speed and hardware requirement [2 – 4].

This particular work concerns about realization of a hardware
optimal vectoring CORDIC processor for IEEE 802.11a standard
which requires evaluation of magnitude and phase angle of a
vector for the Synchronizer [5]. Typical requirements of such a
system are small silicon area and low-power. We have earlier
proposed a low-power hardware optimal architecture for
vectoring CORDIC for such system [6] where using the technique
of scaling-free CORDIC formulation in conjunction with Domain
folding [7, 8] and one sided vector rotation we were able to
eliminate all the arithmetic operations along the angle
accumulation or z-datapath and also showed that a convergence
range of [0, π/8] is sufficient for a vectoring (or forward
rotational) CORDIC to cover the entire coordinate space.
However, two problems were associated with that formulation,
viz., it is not possible to apply the same formulation to reduce the
hardware for the conventional two-sided vector rotation and for a

wordlength larger than 18-bits the hardware requirement of it
becomes more than the classical CORDIC.

In this particular work we propose a formulation to eliminate
all the arithmetic operations along the z-datapath for conventional
two-sided vector rotation and thereby reducing the hardware
while increasing the accuracy. Also the resulting architecture
shows significant hardware saving as the wordlength increases.
Although we stick to the 2’s complement number system, without
loss of generality, this formulation can be adopted easily for
redundant arithmetic and higher radix formulation. A 16-bit
processor developed following this formulation requires 0.14
mm2 area and consumes 700 μW dynamic power when
synthesized in 0.18μm CMOS library. The rest of the paper is
structured as follows: Section II proposes the novel formulation
for eliminating all the arithmetic along the z-datapath, in Section
III we describe the 16-bit vectoring CORDIC architecture
following this formulation and in Section IV we evaluate the
performance of the architecture. Conclusions are drawn in Section
V.

II. ELIMINATION OF Z-DATAPATH FOR TWO-SIDED ROTATION
In a scaling-free CORDIC the ith elementary rotational angle

is described as αi = 2−i. In this formulation, considering one-sided
vector rotation where direction of each elementary rotation σi ∈
{0, 1}, there exists a one-to-one correspondence between the
elementary CORDIC section undergoing a rotation and position
of a ‘1’ in the binary representation of the final accumulated
angle. Thus if an elementary stage undergoing rotation is
designated by a ‘1’ and otherwise ‘0’ then after the data flows
through all the pipelined sections the bit pattern emerged from
these pipelined stages actually represent the accumulated angle
and thus there is no need for any sort of real computation along
the z-datapath apart from keeping some registers to hold the
intermediate bits emerging from each of the stages. However, for
two-sided rotation there exists no such direct correspondence
since σi ∈ {−1, 1} and thus the method stated above cannot be
exploited directly to eliminate the conventional requirement of
ROM and adders along the z-datapath. The next section describes
the method to find the correspondence of the direction of rotation
and the final accumulated angle.

Lemma: If the +ve and −ve rotations are denoted by ‘1’ and ‘0’
respectively then a cyclic right shift of the accumulated bit pattern
represents the actually accumulated angle.

Proof: Let us consider the angle to be accumulated is given by
mlkj −−−− +++= 2222φ (1)

where j, k, l, m ∈ {0, …., b−1}, b being the wordlength and j
being the starting point of iteration index. In binary notation φ can
be expressed as having ‘1’ at the positions j, k, l and m while
other positions will contain ‘0’. Now, if we consider that a ‘1’ and
a ‘0’ corresponding to an iteration index denotes a +ve and −ve
rotation respectively then we can write

∑ ∑ ∑ ∑
−

+=

−

+=

−

+=

−

+=

−−−−−−−− −+−+−+−=
1

1

1

1

1

1

1

1

/ 22222222
k

ji

l

ki

m

li

b

mi

imilikijφ

 (2)

where φ/ is the angle actually computed by this method. Applying
algebraic modification, equation (2) can be written as

)1()1()1()1(/ 2222 −−−−−−−− +++= bmlkφ (3)

From equation (3) it can be seen that a right shift of φ/
 followed

by substitution of positional value of bth bit to jth bit position
yields equation (1) and hence the actual angle to be accumulated.
This operation is nothing but a cyclic right shift of the
accumulated bit pattern. ⁪

It is pretty straightforward to verify that the same argument is true
if the jth pipeline stage starts with a –ve rotation. Thus, using this
formulation, once again, it is possible to find out the required
phase angle by tracking only direction of rotation exhibited by
each of the elementary rotational stages and thus there will not be
any requirement of arithmetic computation in the z-datapath.

III. ARCHITECTURE
The biggest problem of the scaling-free CORDIC

architecture in [6] is that in order to maintain the accuracy in the
definition of the elementary rotational angle αi = 2−i the lowest
value of i has to be imin = p = ⎣(b − 2.585) / 3⎦. Thus to ensure the
convergence over the convergence range of [0, π/8] (which was
proved to be sufficient to cover the entire coordinate space in [6
– 8]) one needs to repeat i=p elementary rotational stage by N =
⎣(π/8)/2−p⎦ times. As b increases the value of p increases and
accordingly N increases rapidly resulting in no more advantage
compared to the classical CORDIC anymore. In order to
overcome this problem we propose a hybrid scheme by
integrating appropriate number of classical CORDIC elementary
rotational stages with the scaling-free elementary rotational
stages. It is to be noted that the neumerical value of π/8 is
0.392699. Thus the highest value of i required to cover the
convergence range will be i = 2 since 2−2 = 0.25 whereas 2−1 =
0.5 which is beyond the convergence range. Thus to cover the
convergence range it is sufficient to integrate K = (p−2) classical
elementary rotational sections (with αi = tan−1 2−i) with (b−p)
scaling-free sections. However, incorporating these classical
elementary rotational sections raises two particular issues: 1) a
scaling circuitry needs to be incorporated at the end of the
CORDIC pipeline and 2) the formulation described in Section II

does not hold because of the definition of αi. The first problem
can be tackled using the same approach as that of the classical
CORDIC. However, since the number of classical stages
integrated are far less than the number of classical stages used in
the conventional CORDIC, for a given wordlength it can be said
intuitively that the scaling circuitry required here will consume
less hardware compared to the classical one. The second problem
can be tackled by using a small ROM where the
combinationations of the angles corresponding to the classical
stages could be stored and finally be added to the angle
accumulated by the scaling-free stages (which computes the
actual angle by using the theory developed in Section II).
However the ROM size increases as 2K. But using the symmetric
property of the combination of angles it is possible to reduce its
size to 2K−1. In that case the output adder needs to be changed to
an adder/subtractor. To illustrate the whole design, here we
describe the design of a 16-bit processor. Without any loss of
generality, the method described here can be extended for other
wordlengths as well.

i=2

i=3

i=4

i=5

M M

i=14

i=15

OOOO

logic{
±

'x 'y

x y

31

21

2tan
2tan
−−

−− +

31

21

2tan
2tan
−−

−− −

ROM

φ

{

{free
scaling

.conv

+

Figure 1: Proposed basic CORDIC pipeline

The complete processor consists of three separate units viz.,

domain, basic pipeline and output unit.
Domain: This unit is reponsible for carrying out the domain
folding operation (described in [6 – 8]) by which the vector lying
in the range of θ ∈ (π/8, π/2] is mapped to φ ∈ [0, π/8].
Theoretically the whole operation can be viewed as a pre-
rotation of the input vector by π/4 (when the vector lies in the
range (π/8, 3π/8]), this is equivalent to the stage i=0 for classical
CORDIC or swapping the x and y values (when the vector lies in
the range (3π/8, π/2]). Thus the hardware requirement of this unit
consists of a couple of comparetors and adders and a scaling unit
by √2. However, since we need to use a scaling unit for scale
factor compensation of the conventional rotational stages at the
output of the processor, the scaling by √2 is merged with it. Thus
the hardware rquirement of the complete Domain circuit is two

comparators and two adder/subtractors. The unit also generates
two 2-bit signals quad and domain which indicates the quadrant
and the domain in which the initial vector lays and pass these
signals to the basic pipeline along with the modified values of
the input vector.
Basic pipeline: According to our number convention the decimal
1 is defined as 0100000000000000. Since the total wordlength is
16-bit the value of p is 4. Thus we need i=2 and 3 conventional
stages to be integrated with the scaling-free stages of i=4, …, 15.
Each of the scaling-free stages require four adder/subtractors [6].
However, for i≥b/2, the hardware requirement of scaling free
stages becomes same as that of the classical CORDIC i.e., two
adder/subtractors. The overall basic pipeline is shown in Figure
1. The entire basic pipeline is 14 stages long. But in order to
balance the pipeline completely it is possible to concatenate each
of the stages having two adder/subtractors together and thereby
reducing the number of pipelined stages. However, we have not
adopted this here since our main aim is to find out the total
hardware requirement following one-to-one theoretical mapping
to architecture.

Since we have used i=2 and 3 conventional stages, we need
to store four possible combination of the angles corresponding to
these stages in the ROM. They are: (tan−1 2−2+ tan−1 2−3), (tan−1
2−2− tan−1 2−3), −(tan−1 2−2+ tan−1 2−3) and −(tan−1 2−2− tan−1 2−3).
But the third and fourth terms are neumerically same as the first
two terms (symmetry property) and it is sufficient to store only
the first two terms in the ROM. We keep an one-bit signal
associated to each of these conventional stages which flows
through the pipeline along with the data. ‘0’ or ‘1’ on these
signals represents +ve or −ve rotations respectively. These
signals are nothing but the inverse of the MSB of yi−1 since a ‘1’
at the MSB implies that the next stage (ith stage) needs to execute
a +ve rotation and vice versa. Similar arrangement is kept with
the scaling-free stages. At each cycle the bits emerging from
different sections of the pipeline are stored in the triangular array
of registers (to keep the timing right) and they flow with the
respective data as shown in Figure 1. However, the signals
emerging from the scaling-free stages are treated separately
according to the theory developed in Section II. The cyclic right
shift is carried out at the last stage of the pipeline and the bit
pattern is dumped in an accumulation register as shown in the
Figure 1. The two MSB of the accumulation register, which
carries the information about the direction of rotation of the
conventional stages are fed into a simple address decoder logic to
pick out the correct value from the ROM. It also generates a
single bit signal that configures the adder/subtractor at the output
in either addition or subtraction mode.

On top of the signals generated by each of the elementary
rotational stages, the signals quad and domain also flows through
the pipeline along with the data. Thus each data has a token
attributed to it which tells the output unit about their initial states.

The total hardware requirement of the basic pipeline is 36
16-bit adders and 80 one-bit registers.
Output unit: The main hardware of the output unit consists of
two adder/subtractors. One adder/subtractor is responsible for

computing the actual accumulated angle by adding/subtracting
the data from the ROM to/from the 12 LSB of the accumulation
register whereas the other adder/subtratcor is used for carrying
out the final step for computing the actual phase angle by
adding/subtratcting π/4 to/from the accumulated angle.
Scaling unit: As has been mentioned earlier, incorporation of the
classical CORDIC stage in the scaling-free formulation requires
scale factor comparison. In this particular case the scale factor to
be multiplied is 1.040201018. This factor is coupled with the
scaling of √2 adaptively when the quad and domain signals
indicate that the initial poistion of the vector was in the range
(π/8, 3π/8]. The complete constant is realized using a shift-and-
add technique with a couple of multiplexers for bypassing some
of the stages.

IV. IMPLEMENTATION RESULTS AND PERFORMANCE
EVALUATION

The 16-bit vectoring CORDIC processor is synthesized using
0.18μm CMOS library. The maximum achievable clcok
frequency is 250 MHz at 1.8V supply. However for our target
system is sufficient to run the processor at 20 MHz clock
frequency. The overall synthesized area of the processor is 0.14
mm2 of which the domain, basic pipeline and the output unit
requires 0.027 mm2, 0.126 mm2 and 0.03 mm2 area respectively.

Power dissipation has been analyzed using Synopsys’ Prime
power. At 20 MHz the processor consumes 700 μW power of
which the basic pipeline consume 564 μW, and the domain and
output unit consumes 58 μW and 85 μW respectively.

Although the 16-bit implementation of the proposed processor
shows excellent area and power performance it is more interesting
to evaluate its performance compared to the classical CORDIC
processor for different wordlength. Figure 2 shows the
comparison of hardware requirement of the proposed one in terms
of adders compared to the classical CORDIC structure for
different wordlength. In this comparison we have assumed that an
n-bit comparator needs area of n/2-bit adder. Hardware involving
the scaling circuitry is not considered here with the assumption
that it is common to both the proposed one and the classical
CORDIC. However, intuitively it can be said that the scaling
circuit required for the present one is less than the classical one
since it used less number of conventional elementary rotational
stages. It can be seen from Figure 2(a) that the proposed design
requires about 75% of the n-bit adders required for the classical
CORDIC where n is the wordlength of the adder. Although in
terms of n-bit adder the difference of adder requirement between
the present one and classical one is more or less uniform but in
reality considering an n-bit adder needs (n−1) full adder the
difference becomes very significant with the increase of
wordlength. Figure 2(b) shows the same comparison for required
registers. Once again the saving here is about 3.2 times which
becomes very significant with increasing wordlength. Figure 2(c)
shows the comparison of size of n-bit ROM required. In this case
the amount of ROM required for the present design is either less
or comparable to that of the classical CORDIC processor up to
28-bit wordlength. However, beyond that the size of ROM for the

present design becomes significantly higher compared to that of
the classical CORDIC.

Figure 2: Hardware requirement comparison: (a) Adders; (b)
Registers; (c) ROM

 Fig 3(a) The magnitude error

 Figure 3(b) The angle error

The computational accuracy of the processor is shown in
Figure 3 (a) and 3(b) for magnitude and angle respectively for the
16-bit processor. No additional attempt was made to minimize the

error by using wider wordlength or by employing any
normalization scheme since we are mainly interested to the
performance of the system as it is. According to the theory

developed in [9] for a classical vectoring CORDIC with 14
fractional digits (as used in our system) the worst case angle
accuracy will be about eight bits and it will also depend on the
initial values of the components of the vector. If the values of x
or y component of the vector is close to 0 or 1 then the
algorithm inherently exhibit high errors. Our simulation has
been done using 40000 data where x and y are varied from 0 to
1. The nature of the error plot shows a comparable performance
to the error characteristics of the classical CORDIC. It is to be
noted that the error floor for magnitude computation is little bit
higher than the expected. This is attributed to the fact that
during the scaling operation the truncation error dominates
where no attempt was made to minimize it by using wider
wordlength.

V. Conclusions

In this article we propose a novel design of vectoring
CORDIC processor. Its hardware cost is less than that of the
conventional CORDIC. The complete elimination of the

arithmetic processing for the z datapath makes its hardware cost
less than that of the classical CORDIC and the hardware saving
becomes significantly high as the wordlength increases. The
algorithm proposed here shows similar error characteristic to that
of the conventional CORDIC. The synthesis results for a 16-bit
processor show that the proposed design occupies a very small
area and consumes very low power.

REFERENCES
[1] J. S. Walther, “A Unified Algorithm for Elementary Functions”,

Proc. Joint Spring Comput. Conf., vol. 38, pp. 379 – 385, Jul. 1971.
[2] H. Dawid and H. Meyr, “The Differential CORDIC Algorithms:

Constant Scale Factor Redundant Implementation without
Correcting Iterations”, IEEE Trans. Comput., vol. 45, no. 3, pp.
307 – 318, 1996.

[3] D. Timmermann and S. Dolling, “Unfolded Redundant CORDIC
VLSI Architecture with Reduced Area and Power Consumption”,
http://www-md.e-technik.uni-rostock.de/ma/dtim/vlsi97.pdf

[4] E. Antello, J. Villalba, J. D. Bruguera, E. L. Zapata, “High
performance rotation architectures based on the radix-4 CORDIC
algorithm”, IEEE Trans. Comput., vol. 46, issue 8, pp. 855 – 870,
Aug. 1997.

[5] M. Krstic, A. Troya, K. Maharatna and E. Grass, “Optimized Low-
power Synchronizer Design for the IEEE 802.11a Standard”,
Proc.ICASSP’03, pp. II 333 – 336.

[6] K. Maharatna, A. Troya, M. Krstic, E. Grass and U. Jagdhold, “A
CORDIC like processor for computation of arctangent and absolute
magnitude of a vector”, Proc. ISCAS 2004, Vol .2, pp. 713-16.

[7] K.Maharatna, A. Troya, S. Banerjee, E. Grass, “Virtually
scaling-free adaptive CORDIC rotator”, IEE Proc. : Computers and
Digital Techniques, vol. 151(6), pp. 448 – 456. Nov. 2004.

[8] K. Maharatna, S.Banerjee, E. Grass, M. Krstic, A. Troya,
“Modified virtually scaling-free adaptive CORDIC rotator
algorithm and architecture”. IEEE Trans. : Circuits and Systems for
Video Technology, vol. 15(11) , pp.1463 – 1474. Nov. 2005.

[9] [9] K. Kota, J. R. Cavallaro, “Numerical accuracy and hardware
tradeoffs for CORDIC arithmetic for special-purpose processors”,
IEEE Trans. Comput. Vol. 42(7), pp:769 - 779 , July 1993.

10 15 20 25 30 35 40

20

40

60

80

100

of

 a
dd

er
s

word length
(a)

Adder Requirement

10 15 20 25 30 35 40

200

400

600

800

1000

of

 re
gi

st
er

s

word length
(b)

Register Requirement

10 15 20 25 30 35 40
0

20

40

60

RO
M

word length
(c)

ROM Requirement

classical
cordic

proposed

classical
cordic

proposed

proposed

classical
cordic

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

