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Abstract— In this article we present a novel design of a hardware 
optimal vectoring CORDIC processor. We present a mathematical 
theory to show that using bipolar binary notation it is possible to 
eliminate all the arithmetic computations required along the z-
datapath. Using this technique it is possible to achieve three and 1.5 
times reduction in the number of registers and adder respectively 
compared to classical CORDIC. Following this, a 16-bit vectoring 
CORDIC is designed for the application in Synchronizer for IEEE 
802.11a standard. The total area and dynamic power consumption 
of the processor is 0.14 mm2 and 700μW respectively when 
synthesized in 0.18μm CMOS library which shows its effectiveness 
as a low-area low-power processor.  

I. INTRODUCTION 
The vectoring mode of CoOrdinate Rotation DIgital 

Computer (CORDIC) algorithm is an effective means for 
computation of the magnitude and phase angle of a vector [1]. In 
this mode of operation, the y component of the input vector is 
forced to zero using iterative vector rotation in a to and fro 
manner through a set of elementary rotation angles. At the end, 
the magnitude value and the accumulated angle (the phase angle) 
are available as the x and z component of the output. In terms of 
hardware, this vector rotation is nothing but a series of simple 
shift-and-add operations and the resulting structure is very 
hardware economical. Owing to its attractiveness it has been 
incorporated in several DSP and communication systems and a 
large volume of research work has been dedicated to improve its 
speed and hardware requirement [2 – 4].  

This particular work concerns about realization of a hardware 
optimal vectoring CORDIC processor for IEEE 802.11a standard 
which requires evaluation of magnitude and phase angle of a 
vector for the Synchronizer [5]. Typical requirements of such a 
system are small silicon area and low-power. We have earlier 
proposed a low-power hardware optimal architecture for 
vectoring CORDIC for such system [6] where using the technique 
of scaling-free CORDIC formulation in conjunction with Domain 
folding [7, 8] and one sided vector rotation we were able to 
eliminate all the arithmetic operations along the angle 
accumulation or z-datapath and also showed that a convergence 
range of [0, π/8] is sufficient for a vectoring (or forward 
rotational) CORDIC to cover the entire coordinate space. 
However, two problems were associated with that formulation, 
viz., it is not possible to apply the same formulation to reduce the 
hardware for the conventional two-sided vector rotation and for a 

wordlength larger than 18-bits the hardware requirement of it 
becomes more than the classical CORDIC.  

In this particular work we propose a formulation to eliminate 
all the arithmetic operations along the z-datapath for conventional 
two-sided vector rotation and thereby reducing the hardware 
while increasing the accuracy. Also the resulting architecture 
shows significant hardware saving as the wordlength increases. 
Although we stick to the 2’s complement number system, without 
loss of generality, this formulation can be adopted easily for 
redundant arithmetic and higher radix formulation. A 16-bit 
processor developed following this formulation requires 0.14 
mm2 area and consumes 700 μW dynamic power when 
synthesized in 0.18μm CMOS library. The rest of the paper is 
structured as follows: Section II proposes the novel formulation 
for eliminating all the arithmetic along the z-datapath, in Section 
III we describe the 16-bit vectoring CORDIC architecture 
following this formulation and in Section IV we evaluate the 
performance of the architecture. Conclusions are drawn in Section 
V.   

II. ELIMINATION OF Z-DATAPATH FOR TWO-SIDED ROTATION 
In a scaling-free CORDIC the ith elementary rotational angle 

is described as αi = 2−i. In this formulation, considering one-sided 
vector rotation where direction of each elementary rotation σi ∈ 
{0, 1}, there exists a one-to-one correspondence between the 
elementary CORDIC section undergoing a rotation and position 
of a ‘1’ in the binary representation of the final accumulated 
angle. Thus if an elementary stage undergoing rotation is 
designated by a ‘1’ and otherwise ‘0’ then after the data flows 
through all the pipelined sections the bit pattern emerged from 
these pipelined stages actually represent the accumulated angle 
and thus there is no need for any sort of real computation along 
the z-datapath apart from keeping some registers to hold the 
intermediate bits emerging from each of the stages. However, for 
two-sided rotation there exists no such direct correspondence 
since σi ∈ {−1, 1} and thus the method stated above cannot be 
exploited directly to eliminate the conventional requirement of 
ROM and adders along the z-datapath. The next section describes 
the method to find the correspondence of the direction of rotation 
and the final accumulated angle. 

Lemma: If the +ve and −ve rotations are denoted by ‘1’ and ‘0’ 
respectively then a cyclic right shift of the accumulated bit pattern 
represents the actually accumulated angle. 



Proof: Let us consider the angle to be accumulated is given by 
mlkj −−−− +++= 2222φ     (1) 

where j, k, l, m ∈ {0, …., b−1}, b being the wordlength and j 
being the starting point of iteration index. In binary notation φ can 
be expressed as having ‘1’ at the positions j, k, l and m while 
other positions will contain ‘0’. Now, if we consider that a ‘1’ and 
a ‘0’ corresponding to an iteration index denotes a +ve and −ve 
rotation respectively then we can write 
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where φ/ is the angle actually computed by this method. Applying 
algebraic modification, equation (2) can be written as 

)1()1()1()1(/ 2222 −−−−−−−− +++= bmlkφ   (3) 

From equation (3) it can be seen that a right shift of φ/
 followed 

by substitution of positional value of bth bit to jth bit position 
yields equation (1) and hence the actual angle to be accumulated. 
This operation is nothing but a cyclic right shift of the 
accumulated bit pattern.              ⁪ 

It is pretty straightforward to verify that the same argument is true 
if the jth pipeline stage starts with a –ve rotation. Thus, using this 
formulation, once again, it is possible to find out the required 
phase angle by tracking only direction of rotation exhibited by 
each of the elementary rotational stages and thus there will not be 
any requirement of arithmetic computation in the z-datapath. 

III. ARCHITECTURE 
The biggest problem of the scaling-free CORDIC 

architecture in [6] is that in order to maintain the accuracy in the 
definition of the elementary rotational angle αi = 2−i the lowest 
value of i has to be imin = p = ⎣(b − 2.585) / 3⎦. Thus to ensure the 
convergence over the convergence range of [0, π/8] (which was 
proved to be sufficient to cover the entire coordinate space in [6 
– 8]) one needs to repeat i=p elementary rotational stage by N = 
⎣(π/8)/2−p⎦ times. As b increases the value of p increases and 
accordingly N increases rapidly resulting in no more advantage 
compared to the classical CORDIC anymore. In order to 
overcome this problem we propose a hybrid scheme by 
integrating appropriate number of classical CORDIC elementary 
rotational stages with the scaling-free elementary rotational 
stages. It is to be noted that the neumerical value of π/8 is 
0.392699. Thus the highest value of i required to cover the 
convergence range will be i = 2 since 2−2 = 0.25 whereas 2−1 = 
0.5 which is beyond the convergence range. Thus to cover the 
convergence range it is sufficient to integrate K = (p−2) classical 
elementary rotational sections (with αi = tan−1 2−i) with (b−p) 
scaling-free sections. However, incorporating these classical 
elementary rotational sections raises two particular issues: 1) a 
scaling circuitry needs to be incorporated at the end of the 
CORDIC pipeline and 2) the formulation described in Section II 

does not hold because of the definition of αi. The first problem 
can be tackled using the same approach as that of the classical 
CORDIC. However, since the number of classical stages 
integrated are far less than the number of classical stages used in 
the conventional CORDIC, for a given wordlength it can be said 
intuitively that the scaling circuitry required here will consume 
less hardware compared to the classical one. The second problem 
can be tackled by using a small ROM where the 
combinationations of the angles corresponding to the classical 
stages could be stored and finally be added to the angle 
accumulated by the scaling-free stages (which computes the 
actual angle by using the theory developed in Section II). 
However the ROM size increases as 2K. But using the symmetric 
property of the combination of angles it is possible to reduce its 
size to 2K−1. In that case the output adder needs to be changed to 
an adder/subtractor. To illustrate the whole design, here we 
describe the design of a 16-bit processor. Without any loss of 
generality, the method described here can be extended for other 
wordlengths as well. 
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Figure 1: Proposed  basic CORDIC  pipeline 

 
 
The complete processor consists of three separate units viz., 

domain, basic pipeline and output unit. 
Domain: This unit is reponsible for carrying out the domain 
folding operation (described in [6 – 8]) by which the vector lying 
in the range of θ ∈ (π/8, π/2] is mapped to φ ∈ [0, π/8]. 
Theoretically the whole operation can be viewed as a pre-
rotation of the input vector by π/4 (when the vector lies in the 
range (π/8, 3π/8]), this is equivalent to the stage i=0 for classical 
CORDIC or swapping the x and y values (when the vector lies in 
the range (3π/8, π/2]). Thus the hardware requirement of this unit 
consists of a couple of comparetors and adders and a scaling unit 
by √2. However, since we need to use a scaling unit for scale 
factor compensation of the conventional rotational stages at the 
output of the processor, the scaling by √2 is merged with it. Thus 
the hardware rquirement of the complete Domain circuit is two 



comparators and two adder/subtractors. The unit also generates 
two 2-bit signals quad and domain which indicates the quadrant 
and the domain in which the initial vector lays and pass these 
signals to the basic pipeline along with the modified values of 
the input vector. 
Basic pipeline: According to our number convention the decimal 
1 is defined as 0100000000000000. Since the total wordlength is 
16-bit the value of p is 4. Thus we need i=2 and 3 conventional 
stages to be integrated with the scaling-free stages of i=4, …, 15. 
Each of the scaling-free stages require four adder/subtractors [6]. 
However, for i≥b/2, the hardware requirement of scaling free 
stages becomes same as that of the classical CORDIC i.e., two 
adder/subtractors. The overall basic pipeline is shown in Figure 
1. The entire basic pipeline is 14 stages long. But in order to 
balance the pipeline completely it is possible to concatenate each 
of the stages having two adder/subtractors together and thereby 
reducing the number of pipelined stages. However, we have not 
adopted this here since our main aim is to find out the total 
hardware requirement following one-to-one theoretical mapping 
to architecture. 

Since we have used i=2 and 3 conventional stages, we need 
to store four possible combination of the angles corresponding to 
these stages in the ROM. They are: (tan−1 2−2+ tan−1 2−3), (tan−1 
2−2− tan−1 2−3), −(tan−1 2−2+ tan−1 2−3) and −(tan−1 2−2− tan−1 2−3). 
But the third and fourth terms are neumerically same as the first 
two terms (symmetry property) and it is sufficient to store only 
the first two terms in the ROM. We keep an one-bit signal 
associated to each of these conventional stages which flows 
through the pipeline along with the data. ‘0’ or ‘1’ on these 
signals represents +ve or −ve rotations respectively. These 
signals are nothing but the inverse of the MSB of yi−1 since a ‘1’ 
at the MSB implies that the next stage (ith stage) needs to execute 
a +ve rotation and vice versa. Similar arrangement is kept with 
the scaling-free stages. At each cycle the bits emerging from 
different sections of the pipeline are stored in the triangular array 
of registers (to keep the timing right)  and they flow with the 
respective data as shown in Figure 1. However, the signals 
emerging from the scaling-free stages are treated separately 
according to the theory developed in Section II. The cyclic right 
shift is carried out at the last stage of the pipeline and the bit 
pattern is dumped in an accumulation register as shown in the 
Figure 1. The two MSB of the accumulation register, which 
carries the information about the direction of rotation of the 
conventional stages are fed into a simple address decoder logic to 
pick out the correct value from the ROM. It also generates a 
single bit signal that configures the adder/subtractor at the output 
in either addition or subtraction mode.  

On top of the signals generated by each of the elementary 
rotational stages, the signals quad and domain also flows through 
the pipeline along with the data. Thus each data has a token 
attributed to it which tells the output unit about their initial states.  

The total hardware requirement of the basic pipeline is 36 
16-bit adders and 80 one-bit registers. 
Output unit: The main hardware of the output unit consists of 
two adder/subtractors. One adder/subtractor is responsible for 

computing the actual accumulated angle by adding/subtracting 
the data from the ROM to/from the 12 LSB of the accumulation 
register whereas the other adder/subtratcor is used for carrying 
out the final step for computing the actual phase angle by 
adding/subtratcting π/4 to/from the accumulated angle. 
Scaling unit: As has been mentioned earlier, incorporation of the 
classical CORDIC stage in the scaling-free formulation requires 
scale factor comparison. In this particular case the scale factor to 
be multiplied is 1.040201018. This factor is coupled with the 
scaling of √2 adaptively when the quad and domain signals 
indicate that the initial poistion of the vector was in the range 
(π/8, 3π/8]. The complete constant is realized using a shift-and-
add technique with a couple of multiplexers for bypassing some 
of the stages. 

IV. IMPLEMENTATION RESULTS AND PERFORMANCE 
EVALUATION 

The 16-bit vectoring CORDIC processor is synthesized using 
0.18μm CMOS library. The maximum achievable clcok 
frequency is 250 MHz at 1.8V supply. However for our target 
system is sufficient to run the processor at 20 MHz clock 
frequency. The overall synthesized area of the processor is 0.14 
mm2 of which the domain, basic pipeline and the output unit 
requires 0.027 mm2, 0.126 mm2 and 0.03 mm2 area respectively.  

Power dissipation has been analyzed using Synopsys’ Prime 
power. At 20 MHz the processor consumes 700 μW power of 
which the basic pipeline consume 564 μW, and the domain and 
output unit consumes 58 μW and 85 μW respectively.  

Although the 16-bit implementation of the proposed processor 
shows excellent area and power performance it is more interesting 
to evaluate its performance compared to the classical CORDIC 
processor for different wordlength. Figure 2 shows the 
comparison of hardware requirement of the proposed one in terms 
of adders compared to the classical CORDIC structure for 
different wordlength. In this comparison we have assumed that an 
n-bit comparator needs area of n/2-bit adder. Hardware involving 
the scaling circuitry is not considered here with the assumption 
that it is common to both the proposed one and the classical 
CORDIC. However, intuitively it can be said that the scaling 
circuit required for the present one is less than the classical one 
since it used less number of conventional elementary rotational 
stages. It can be seen from Figure 2(a) that the proposed design 
requires about 75% of the n-bit adders required for the classical 
CORDIC where n is the wordlength of the adder. Although in 
terms of n-bit adder the difference of adder requirement between 
the present one and classical one is more or less uniform but in 
reality considering an n-bit adder needs (n−1) full adder the 
difference becomes very significant with the increase of 
wordlength. Figure 2(b) shows the same comparison for required 
registers. Once again the saving here is about 3.2 times which 
becomes very significant with increasing wordlength. Figure 2(c) 
shows the comparison of size of n-bit ROM required. In this case 
the amount of ROM required for the present design is either less 
or comparable to that of the classical CORDIC processor up to 
28-bit wordlength. However, beyond that the size of ROM for the 



present design becomes significantly higher compared to that  of 
the classical CORDIC. 

Figure 2: Hardware requirement comparison: (a) Adders; (b) 
Registers; (c) ROM 

 
  Fig 3(a) The magnitude error 

 
  Figure 3(b) The angle error 

 

The computational accuracy of the processor is shown in 
Figure 3 (a) and 3(b) for magnitude and angle respectively for the 
16-bit processor. No additional attempt was made to minimize the 

error by using wider wordlength or by employing any 
normalization scheme since we are mainly interested to the 
performance of the system as it is. According to the theory 

developed in [9] for a classical vectoring CORDIC with 14 
fractional digits (as used in our system) the worst case angle 
accuracy will be about eight bits and it will also depend on the 
initial values of the components of the vector. If the values of x 
or y component of the vector is close to 0 or 1 then the 
algorithm inherently exhibit high errors. Our simulation has 
been done using 40000 data where x and y are varied from 0 to 
1. The nature of the error plot shows a comparable performance 
to the error characteristics of the classical CORDIC. It is to be 
noted that the error floor for magnitude computation is little bit 
higher than the expected. This is attributed to the fact that 
during the scaling operation the truncation error dominates 
where no attempt was made to minimize it by using wider 
wordlength. 

V. Conclusions 

In this article we propose a novel design of vectoring 
CORDIC processor. Its hardware cost is less than that of the 
conventional CORDIC. The complete elimination of the 

arithmetic processing for the z datapath makes its hardware cost 
less than that of the classical CORDIC and the hardware saving 
becomes significantly high as the wordlength increases. The 
algorithm proposed here shows similar error characteristic to that 
of the conventional CORDIC. The synthesis results for a 16-bit 
processor show that the proposed design occupies a very small 
area and consumes very low power. 
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