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Peak Transform for Efficient Image
Representation and Coding

Zhihai He

Abstract—In this work, we introduce a nonlinear geometric
transform, called peak transform (PT), for efficient image rep-
resentation and coding. The proposed PT is able to convert
high-frequency signals into low-frequency ones, making them
much easier to be compressed. Coupled with wavelet transform
and subband decomposition, the PT is able to significantly reduce
signal energy in high-frequency subbands and achieve a significant
transform coding gain. This has important applications in efficient
data representation and compression. To maximize the transform
coding gain, we develop a dynamic programming solution for
optimum PT design. Based on PT, we design an image encoder,
called the PT encoder, for efficient image compression. Our ex-
tensive experimental results demonstrate that, in wavelet-based
subband decomposition, the signal energy in high-frequency
subbands can be reduced by up to 60% if a PT is applied. The
PT image encoder outperforms state-of-the-art JPEG2000 and
H.264 (INTRA) encoders by up to 2-3 dB in peak signal-to-noise
ratio (PSNR), especially for images with a significant amount
of high-frequency components. Our experimental results also
show that the proposed PT is able to efficiently capture and
preserve high-frequency image features (e.g., edges) and yields
significantly improved visual quality. We believe that the concept
explored in this work, designing a nonlinear transform to convert
hard-to-compress signals into easy ones, is very useful. We hope
this work would motivate more research work along this direction.

Index Terms—Energy compaction, image compression, peak
transform (PT), wavelet transform (WT).

I. INTRODUCTION

T
HE KEY in efficient image compression is to explore

source correlation so as to find a compact representation

of image data. Over the past few decades, various spatial trans-

forms, such as the Karhunen Lòeve transform (KLT), discrete

cosine transform (DCT), and discrete wavelet transform (DWT)

[1], have been developed to explore source correlation. As we

know, KLT is the optimal spatial transform in removing source

correlation. To elaborate, if the co-variance matrix of input

source is known, we can design a KLT transform, denoted by

matrix , such that the output components in are un-

correlated. A theory states that KLT achieves a larger transform
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coding gain than any other spatial transforms [1].1 However,

it should be noted that these transforms mentioned here are

linear which can be represented by matrices. In image/video

compression, these linear transforms, including KLT, DCT,

and DWT, are used to remove source correlation. We refer to

this type of statistical correlation explored by linear transforms

as linear correlation As we know, images (and videos) are a

special type of data. They are not just 2-D arrays of pixels in a

statistical sense. For example, if we randomly generate a 2-D

array of data according to a given statistical distribution, the

probability for this 2-D array of data to be a natural image is

extremely low. This is because, besides statistical characteris-

tics, natural images contains a lot of nonstatistical perceptual

image features, such as edges, contours, patterns, structures,

and objects. In other words, in images and videos, besides linear

correlation, there is a significant amount of nonlinear source

correlation presented by these perceptual image features. This

type of nonlinear correlation has been left largely unexplored

by linear transforms, such as KLT, DCT, and DWT.

A. Related Work

During the past decades, researchers have been designing ef-

ficient transform tools, such as energy-compacting wavelets, to

improve data compression efficiency [3]. Many state-of-the-art

image compression schemes, such as SPIHT [6] and JPEG2000

[1], are built upon wavelet subband decomposition. Besides

this effort, a significant body of research has been focused

on developing efficient prediction schemes to explore the

nonlinear source correlation which has been left largely unex-

plored by linear spatial transforms. For example, cross-subband

parent–children dependency has been observed and explored

by EZW (embedded zero-tree wavelet) [17], SPIHT [6], and

many other wavelet-based image coding algorithms. Note that

wavelet subband decomposition is in its nature a 1-D transform.

Wavelet transform (WT) is able to efficiently capture and char-

acterize 1-D singularity. To handle 2-D data, a common practice

is to apply the WT to each row then to each column of the

image. It has been observed that this type of extended 1-D WT

is not able to efficiently represent 2-D curvilinear features, such

as edges, object contours, etc [16]. Recently, several modified

WTs which take edge flow or texture orientation into account

have been developed. These transforms include curvelet [15],

ridgelet [16], bandelet [7], wedgelet [8], contourlet [9], and

1However, to achieve this optimum performance, the KLT transform needs
to adapt its transform matrix according to input source statistics. Therefore, in
real applications, especially in image and video compression, where the input
source has time-varying statistics, the KLT transform often has high computa-
tional complexity (in computing the transform matrix) and requires a significant
amount of overhead bits to encode its transform matrix information.
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directionlet [10]. Some of these new transforms have shown

successful applications in image denoising and enhancement

[15], [16]. However, their potential in highly efficient image

compression remains still unclear. One of the major reasons

is that these methods cause significant over-sampling which

prevents efficient data compression. Another important type of

techniques, called directional or orientation-adaptive wavelets,

which combine directional prediction and WT, have been

developed in the literature [4], [5], [11], [12], [14]. The central

idea in directional WT is to filter the image data along object

structure or texture orientation, instead of filtering row by row

or column by column. It has been shown that a significant per-

formance gain can be achieved with directional WT, especially

for images with significant texture patterns [4], [5], [12]. Spatial

prediction is also a very important coding feature in H.264

coding of INTRA frames where image pixels are predicted by

their neighbors from multiple directions [13].

B. Overview of This Work

In this work, we propose to explore a new approach: devel-

oping a nonlinear geometric transform, called peak transform

(PT), to assist the WT in exploring nonlinear data correlation.

Conceptually speaking, the proposed PT is able to convert a

hard-to-compress signal into an easier-to-compress one by ex-

ploring the nonlinear geometric source correlation within the

input signal. From a transform analysis perspective, the PT is

able to convert a high-frequency signal, which is often hard to

be compressed by subband encoders, into a low-frequency one,

which can be easily compressed, and as a result, significantly

improves the transform coding gain [1]. We develop a new sub-

band decomposition scheme, called peak transform wavelet

transform (PTWT) subband decomposition, for compression of

generic data, including 1-D signals (e.g., speech and music) and

2-D images. Based on PTWT subband decomposition, we de-

velop a new data compression system, called PT encoder, for

image compression. In this paper, we will define the PT and

discuss its major properties. We will develop a dynamic pro-

gramming solution to find the optimum PT for a given input

signal so as to maximize the transform coding gain. We will

study various design issues of the PT image encoder. Our exper-

imental results demonstrate that the PT is able to significantly

improve the transform coding again. The new PT encoder out-

performs state-of-the-art image encoders, including JPEG2000

[1] and H.264 [13], by up to 2–3 dB, especially for images with

a significant amount of high-frequency components.

The rest of the paper is organized as follows. In Section II,

we will present the mathematical definition of PT and discuss

its major properties from a data compression perspective. Sec-

tion III will present the new PTWT subband decomposition

scheme. In Section IV, we will present a dynamic program-

ming solution for optimum PT design. The PT image encoder

design will be discussed in Section V. In Section VI, we will dis-

cuss how the parameters of the PT encoder should be selected

such that the overall rate-distortion performance of the encoder

is maximized. The experimental results are presented in Sec-

tion VII. Section VIII will discuss future research directions and

conclude the paper.

Fig. 1. Cascade of two curve segments.

II. DEFINITION AND PROPERTIES OF PEAK TRANSFORM

In this section, we will first explain our motivation behind

the idea of PT. We will then define the PT and discuss its major

properties by examining several examples of PT.

A. Motivation for Introducing Peak Transform

A well-known observation in data compression with trans-

form coding is that: low-frequency smooth signals can be easily

compressed while high-frequency ones (signals with a lot of

high-frequency components) are not. Therefore, it is highly de-

sirable to find a transform which is able to convert high-fre-

quency signals into low-frequency ones. This will significantly

improve data compression efficiency. Our research problem in

this work becomes: Can we design a transform to preprocess the

input signal (image data) such that the preprocessed signal has a

much smaller high-frequency subband energy than the original

signal? In the following sections, we will introduce the PT and

show that it has this unique and important property.

B. Definition of Peak Transform

Definition: Curve Segment—In this work, a curve segment is

defined to be a continuous function defined over a finite

interval .

Definition: Cascade of Curve Segments—Given two curve

segments and defined over finite intervals

and with , the cascade of these two curve seg-

ments yields a new curve segment defined over

(1)

We denote this cascading operation by

(2)

Physically, the new curve segment is obtained by joining

two curve segments and with proper shifting oper-

ations as illustrated in Fig. 1.

Now we are ready to define the PT.
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Fig. 2. Example of five-point PT.

Definition: -Point Forward Peak Transform—A continuous

function is defined over a finite interval . This interval

is partitioned into subintervals by points,

. For convenience, we write and

. We refer to as peaks (or breaking points).

The curve segment defined over interval is denoted

by . The -point forward PT of ,

denoted by , is defined as

(3)

where

(4)

and

(5)

are the cascades of all odd- and even-numbered curve segments,

respectively. Here, and are, re-

spectively, the largest odd and even integers that are less than

or equal to . Physically speaking, in forward PT, we first cas-

cade all odd-numbered curve segments then all even-numbered

curve segments and form a new curve. Fig. 2 shows an example

of five-point PT. For convenience and in case of no confusion,

we denote the forward PT by .

It can be seen that the PT only changes the order of curve

segments and is reversible. The backward transform can be

done by simply recascading the curve segments according to

their original order. We denote the backward PT operation

by . In the following, we give a mathematical

definition of backward PT.

Definition: Backward Peak Transform—Let

(6)

which is the output of PT of with peaks

. Let which is the length of the th

interval and

(7)

which is the total length of all odd-numbered intervals. In back-

ward PT, the original function is constructed as follows:

(8)

Here, if is odd, the curve segment is given by

(9)

If is even

(10)

It should be noted that, although the forward and backward PTs

in the above are defined for continuous-time signals, they can be

also defined for discrete-time signals in the same manner. For

image data, as shown in the following section, we can simply

treat each row or column of data as a piece-wise linear function

with a straight line connecting two neighboring data points and

apply the PT.

C. Properties of Peak Transform

One important property of PT is that it is capable of con-

verting a high-frequency signal into a low-frequency one if the

peaks are properly selected. In other words, the PT is able to

reduce the amount of high-frequency components in signals.

To see this, let us first look at a toy example. As we know,

1-D signals can be approximated by piecewise linear functions.

Fig. 3(A) shows a special piece-wise linear function in

which all descending line segments have the the same slope

and all ascending line segments have the same slope

. We use local minimum and maximum points (breaking

points) as peaks for PT, as shown in Fig. 3(A) with dia-

monds. Fig. 3(B) shows the PT output signal . It

can be seen that the transform output is much smoother than the

original one and the high-frequency components of the original

signal have been dramatically reduced. This can be demon-

strated with subband decomposition. We pass the signals in

Fig. 3(A) and (B) into a Daubechies (9, 7) filter bank. Fig. 4(A)

and (B) shows the respective outputs of the high-pass filter.

It can be seen that coefficients in high-frequency subbands

with PT have much smaller magnitudes. The total energy of

high-frequency subbands with PT is only 9% of that without

PT. We expect that the PT has a similar behavior on other

piecewise linear functions if the peaks are properly selected.

In the following example, we demonstrate this unique prop-

erty of PT on more generic signals. We take the 330th row

of image Barbara as the input signal , which is shown

in Fig. 5(A). The peaks used in PT are shown in diamonds.
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Fig. 3. PT of a piece-wise linear function: (A) original piece-wise linear func-
tion and the selected peaks shown in diamonds; (B) PT output.

Fig. 4. (A) High-frequency components of the original signal; (B) high-fre-
quency components of the PT output.

In Section IV, we will explain how to obtain these peaks. In

this example, we first apply the forward PT to and obtain

. Fig. 5(B) shows the PT output. As in the toy example,

we pass to a Daubechies (9, 7) filter bank and obtain

the low and high-frequency components (subbands) of .

For easy comparison, we apply a backward PT to these two

subbands to bring transform coefficients back to their original

image locations. Fig. 6(A) and (B) shows the high-frequency

subbands of the input signal without and with PT. According

to our experiment, the energy of the high-frequency subband

with PT is about 43% of that without PT. Fig. 7 shows the cor-

responding low-frequency subbands. We can see that they are

very similar to each other.

From these two experiments, we can see that the PT has a very

important property: it is able to significantly reduce high-fre-

quency subband energy while maintaining low-frequency sub-

band characteristics. This will have significant applications in

data compression. In this work, we focus our effort on optimum

PT design for 2-D image compression. The algorithms and re-

sults obtained in this work can be easily extended to 1-D cases

for acoustic data or other 1-D data compression.

Fig. 5. PT of the 330th row of image Barbara: (A) original piece-wise linear
function and the selected peaks shown in diamonds; (B) PT output.

Fig. 6. (A) High-frequency subband of the original signal without PT; (B) high-
frequency subband with PT.

Fig. 7. (A) Low-frequency subband of the original signal without PT; (B) low-
frequency subband with PT.

To successfully design an image encoder based on PT, the

following issues need to be fully addressed. 1) Optimum peak

transform design. How do we find the optimum set of peaks

such that the total energy of high-frequency subbands is

minimized? 2) Image encoder design. Note that, in PT, the peak

locations are overhead information which needs to be encoded
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Fig. 8. PTWT subband decomposition.

and transmitted to the decoder for backward PT and image re-

construction. How to efficiently encode the peak locations and

how to design an image encoding system to achieve high data

compression efficiency are two open issues. 3) How do we an-

alyze, control, and optimize the rate-distortion behavior of the

encoder such that its compression performance is maximized?

In the following sections, we will investigate these issues.

III. PEAK TRANSFORM-BASED SUBBAND

DECOMPOSITION AND SYNTHESIS

In this section, we will discuss how to design a data compres-

sion system based on PT. In PT-based data compression, the PT

is coupled with WT and subband decomposition to minimize

the signal energy of high-frequency subbands.

Let us start with 1-D input signals, which can be a row or a

column of image pixels. Let be an input signal of length

where (as mentioned in Section II-B, we

consider the discrete-time input signal as a piece-wise linear

function ). As illustrated in Fig. 8, an -point forward

PT with peaks is applied to the input signal . The

PT output, denoted by , is then passed to a two-

branch filter bank with a low-pass filter and a high-pass

filter . An -point backward PT with peaks , de-

noted by , is applied to both low and high-fre-

quency subbands. It should be noted that the sizes of low and

high-frequency subbands due to down-sampling are both .

Therefore, the original peaks cannot be used for backward PT

any more. One possible approach is to force the location of each

original peak to be an even integer. During the backward PT

of two subbands, we use as peaks.

The backward PT is introduced here for two major reasons.

First, according to our experience, the backward PT, acting as

a balance to the forward PT, is able to alleviate the accumula-

tion of quantization errors. Second, using as peaks,

the backward PT is able to bring WT coefficients back to their

original image locations so as to maintain source correlation.

We will explain this in detail within the context of image com-

pression in Section V. The above procedure, which decomposes

the input signal into two subbands using PT and WT, is called

PTWT subband decomposition.

The PTWT subband decomposition procedure can be

repeated for low and high-frequency subbands to further

decompose the signal into more frequency subbands. The

frequency subbands will be quantized, entropy encoded, and

transmitted to a decoder, as illustrated in Fig. 8. The peaks

will be also compressed with lossless coding and sent as

overhead information to the decoder. At the decoder side, the

peaks will be decoded. A forward PT with

peaks will be applied to low and high-frequency sub-

bands. After subband synthesis, a backward PT

will be performed to obtain the reconstructed signal .

Here, . We can see that the PTWT subband decom-

position and synthesis illustrated in Fig. 8 guarantees perfect

reconstruction and the only loss is caused by quantization, as

in conventional wavelet-based data compression [3].

IV. OPTIMUM PEAK TRANSFORM DESIGN

USING DYNAMIC PROGRAMMING

In this section, we will formulate the optimum PT design

problem and develop a dynamic programming solution to find

the optimum PT.

A. Problem Formulation

As in conventional WT-based subband decomposition, the

PTWT subband decomposition outlined in Fig. 8 will decom-

pose the input signal into a series of subbands, which consist of

one lowest-frequency subband and a number of high-frequency

subbands. Here, by “high-frequency subbands,” we mean those

subbands which have ever been filtered by the high-pass filter

. In data compression with subband decomposition, bits

are mostly used for encoding high-frequency subbands because

the lowest-frequency subband becomes very small in size after

several levels of subband decomposition. We observe that, if the

input image, quantization, and data coding schemes (such as

EZW or SPIHT) are given, the performance of subband image

compression mainly depends on how efficiently the subband de-

composition (or WT) is able to remove spatial source correlation

and minimize the energy of high-frequency subbands. In gen-

eral, a smaller high-frequency subband energy often results in

less coding bits [17]. Therefore, in optimum PT design, we need
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to find the PT which is able to minimize the energy of high-fre-

quency subbands.

Let us look at the PTWT subband decomposition in Fig. 8

(the top half) in more detail. Our purpose in optimum PT design

is to minimize the energy of the high-frequency subband. We

denote the high-pass filtering operation by and the high-

frequency PTWT subband after down-sampling by . Since

is the high-pass filtering output of the PT data, we write

(11)

whose energy is denoted by

(12)

Note that the PT is fully characterized by its peaks . There-

fore, the optimum PT can be formulated as: find peaks

such that the high-frequency subband energy is minimized,

which can be mathematically written as

(13)

Here, is also an optimization variable since the total number

of peaks needs to be determined. Theoretically speaking, any

even-numbered pixel in the input or any even integer between 1

and (the size of the input signal) can be chosen as a peak for

PT. The reason for “even” is explained in Section III. Define

(14)

where . The optimization problem in (13) can be

rewritten as

(15)

We can see that there are possible combinations of

. One brute-force approach to solving the

optimum PT design problem in (18) is to search all of these

combinations and find the one which has the minimum

high-frequency subband energy . Clearly, the computational

complexity of this approach is too high. In the following

section, we propose a fast and efficient dynamic programming

solution for optimum PT design.

B. A Dynamic Programming Solution

Our dynamic programming solution is based on the following

two important observations. The first observation will reduce

search space of the optimization problem while the second ob-

servation will lead us to a dynamic programming solution.

1) Observation A: The objective of PT is to rearrange the

input data on a segment basis and make the connection between

segments smoother so as to significantly reduce its high-fre-

quency subband energy around these connecting points (peaks).

This can be easily seen from the example shown in Fig. 3. There-

fore, it is more desirable to choose those locations with large

high-frequency energy levels as peaks and we hope the PT is

Fig. 9. High-pass filtering of an input signal.

able to significantly reduce the energy levels at these locations.

To do this, we can apply the high-pass filter to the input

. Let be the filtering output at location or the

signal response to the high-pass filter , as shown in Fig. 9.

We can then choose peaks from the following candidate set

(16)

where is a threshold. The value of will be determined later.

Note that here we make sure that all candidate peaks are even

integers. Let be the size of the candidate set . Now,

the optimum PT design problem reduces to: choose peaks

from such that the high-frequency subband energy is mini-

mized. Let

(17)

The optimization problem in (15) can be rewritten as

(18)

Here, the size of search space is reduced to . Clearly, the

smaller the , the larger the search space.

2) Observation B: We also observe that the optimum PT de-

sign problem has the following two properties which allow us

to solve this problem using a dynamic programming approach.

First, the decision on , either choosing as peak or not, only

changes the high-frequency subband energy within a neighbor-

hood of and the neighborhood size is determined by the length

of the high-pass filter . This implies that, if two locations

and are separated from each other by a distance larger than

the filter length (denoted by ) of , as illustrated in Fig. 9,

the decisions on choosing and as peaks or not are indepen-

dent of each other. The decision on only depends on the status

and decisions of previous candidate peaks within the window of

.

Second, the objective function is the high-frequency

subband energy, which is the summation of the energy

of all coefficients in the subband. Therefore, if

minimizes the total energy of the whole

subband indexed by ], it should also minimize the

subband energy within each subinterval of ]. For ex-

ample, must minimize the subband

energy within interval . Otherwise, we just replace

with the optimum one.
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Fig. 10. Window-based dynamic programming for optimum PT.

We can see that these two important properties of optimum

PT design allow us to solve this problem using dynamic pro-

gramming, which will be explained in detail in the following

section.

C. Window-Based Dynamic Programming for Optimum Peak

Transform

As in conventional dynamic programming, the problem-

solving process is divided into stages. Here, is the total

number of candidate peaks. At each stage, the decision param-

eter has two states: which means is chosen as a

peak; and which means is not chosen; In conventional

dynamic programming, the decision at stage only depends

on the result of its previous stage. However, in optimum PT

design, as discussed in the above section, the decision on a

candidate peak depends on several previous candidate peaks

within the window . Therefore, in this work, we

propose a window-based dynamic programming method to

solve the optimum PT design problem. It should be noted that

the number of candidate peaks within the window

is not fixed since might not be uniformly distributed:

some regions might have more candidate peaks than others.

This will introduce some additional complexity into dynamic

programming. To simplify the problem, we assume that the

decision on only depends on its previous candidate peaks

. In this way, the number of candidate peaks in

the dependence window is fixed at . The value of should

be chosen based on the length of the high-pass filter .

For example, if we use the Daubechies (9, 7) filter bank, the

high-pass filter has a length of 7. In this case, as we can see

from the experimental results in Section VII, will be

sufficient.

Let us introduce one more notation. Given a binary vector

, we choose peaks for PT from candidates

according to this binary vector. We then per-

form PTWT subband decomposition on the input signal

within interval . We denote the corresponding high-fre-

quency subband energy by .

Suppose that, in the current stage, the decision window

is at candidate peaks , as illustrated in

Fig. 10. Each candidate peak has two possibilities: ei-

ther being selected as a peak or not. Therefore, in total,

within this window, there are possibilities denoted by

. We index

these possibilities by integers

(19)

where the function converts binary numbers into an in-

teger with and as the least and most significant

bits, respectively. Suppose that, for each possibility , we have

already known the optimum decisions on previous candidate

peaks, denoted by and the corresponding

minimum high-frequency subband energy is denoted by

(20)

In total, there are energy values.

Suppose now we are shifting the decision window to the next

candidate peak , as illustrated in Fig. 10. For each possibility

, we need to find the optimum decisions on

its previous candidate peaks . Note that for each

possibility in this new window, there are two cases:

and . For the case of , from the pre-

vious stage, we already know the optimum decision on pre-

vious candidate peaks , which is denoted by

, where

(21)

Similarly, for the case of , from the previous

stage, we also already know the optimum decision on pre-

vious candidate peaks , which is denoted by

, where

(22)

What we need to do is to compare these two cases and determine

which one has a smaller high-frequency subband energy, either

or . Let

(23)

(24)

If , we use

as the optimum decision on previous candidate peaks

and as the minimum energy. Otherwise, we use

and , respectively.

In this way, at each stage of our dynamic programming, we

always keep possibilities within the decision window; and

for each possibility, we always record the optimum decision

on its previous peak candidates and the corresponding min-

imum energy values. Initially, the decision window starts from

with no previous peaks. We then shift the window

stage by stage by performing the above updating procedure.
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Fig. 11. (A) 370th row of Image Lena and the optimum peaks for PT; (B) PT
output.

When it reaches to the last candidate peak , we still have

possibilities. We simply find the possibility that has the

minimum high-frequency subband energy as the optimum

solution. The corresponding decision on candidate peaks forms

the optimum peaks for PT.

D. Experimental Results on Optimum Peak Transform Design

We have implemented the window-based dynamic program-

ming algorithm for optimum PT in MATLAB. The MATLAB

codes and test data for optimum forward and backward trans-

form can be downloaded from our web page [18]. Our extensive

simulations show that this algorithm is robust and efficient.

In the following experiment, we use the 370th row of image

Lena (512 512) as the test signal , as shown in Fig. 11(A).

The optimum set of peaks determined by the window-based dy-

namic programming algorithm are also shown in Fig. 11(A)

with diamonds. In total, there are 68 candidate peaks and 40

of them are selected as peaks for PT. Here, the peak threshold

is set to be 16 and the decision window size is 5. Fig. 11(B)

shows the PT output. Fig. 12 compares the high-frequency sub-

bands with and without PT. We can see that the high-frequency

subband with PT in Fig. 12(B) has a smaller energy than that

in Fig. 12(A) without PT. To numerically evaluate this energy

reduction performance, we define a PT gain as

(25)

where and represent the high-frequency

subband energy of with and without PT, respectively. In

this experiment, the PT gain is . In other words, the

PT reduces the high-frequency subband energy by nearly 40%.

Fig. 13(A) and (B) shows the low and high-frequency subbands

using wavelet subband decomposition and PTWT subband de-

composition, respectively. It can be seen that, as in conventional

subband decomposition, the PTWT low-frequency subband is

also similar to the input signal.

In Fig. 14(A), we plot the PT gain for each row of image Bar-

bara. Fig. 14(B) shows the corresponding number of peaks se-

lected by the dynamic programming algorithm for PT. It can be

seen that, for most image rows, the PT gain is larger than 1.6.

Fig. 12. (A) High-frequency subband without PT; (B) high-frequency subband
with PT.

Fig. 13. (A) Low and high-frequency subbands without PT; (B) low and high-
frequency subbands with PT.

Fig. 14. (A) PT gain for each row of image Barbara; (B) corresponding number
of peaks used for PT.

For some image rows, the transform gain is even larger than 2.

This implies that the PT reduces the high-frequency subband

energy by about 40%–55% (note that, for some image rows, the

PT gain is 1 and the number of peaks is zeros; this is because

these image rows are already very smooth and there is no need to
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Fig. 15. One level of PTWT subband decomposition of images.

apply any PT). Our simulations over other test signals yield sim-

ilar results, especially for input signals with a significant amount

of high-frequency components.

V. PEAK TRANSFORM-BASED IMAGE ENCODER DESIGN

In this section, we will study how to design an efficient

image compression system based on PT. First, we will discuss

how to apply the PTWT subband decomposition to 2-D images.

Second, we will study how the overhead information, i.e., the

locations of peaks, could be efficiently encoded.

A. Subband Decomposition of Images Using Peak Transform

In this section, we extend the 1-D PTWT subband decompo-

sition presented in Section III to 2-D PTWT subband decom-

position of images. Fig. 15 shows one-level PTWT subband de-

composition of image Barbara. We first apply the 1-D PTWT

subband decomposition described in Fig. 8 to every image row.

This will create two image subbands: low and high frequency

subbands, denoted by and , respectively. In addition, for

each row, we have a set of peaks used in PT. Note that

is an even integer. For each row, we use a binary

peak map to indicate the locations of peaks. Fig. 15 (top-middle)

shows the horizontal peak map for all image rows.

Now, we are ready to explain the need of inverse PT in

PTWT subband decomposition as mentioned in Section III.

Note that during horizontal PTWT subband decomposition,

different image rows use different peaks for PT. Therefore, the

image correlation in the vertical direction might be destroyed.

For example, Fig. 16 shows one-level PTWT subband decom-

position of image Barbara if the inverse PT is not performed.

We can see that the low-frequency subband does not like

the original image at all and the vertical image correlation

is destroyed after horizontal PTWT subband decomposition.

Therefore, by performing the inverse PT, we are able to bring

transform coefficients back to their original image locations so

as to preserve the source correlation and prepare for the next

stage of subband decomposition along the vertical direction.

In the second step, we apply the 1-D PTWT subband decom-

position to each column of the subband. This will decompose

the subband into two subbands, denoted by and , re-

spectively. As in the first step, a peak map, called vertical peak

map, for this subband image is also generated, as shown in

Fig. 16. One level of PTWT subband decomposition of image Barbara without
inverse PT.

Fig. 15 (bottom-middle). In the third step, we apply a vertical

DWT (without PT) to further decorrelate the subband, as

shown in Fig. 15 (bottom-right). Note that, here, we use DWT

instead of PTWT. This is because the performance gain of PT

on the subband is very limited. The horizontal and vertical

peak maps are combined into one single peak map, as shown

in Fig. 15 (top-right). This concludes one-level of 2-D PTWT

subband decomposition.

Certainly, this 2-D PTWT subband decomposition can be re-

peated for the subband so as to obtain a dyadic subband de-

composition of the image. Fig. 17(B) shows a three-level PTWT

subband decomposition of image Barbara. For comparison, we

also show the three-level subband decomposition using DWT

only in Fig. 17(A). It can be seen that the PT significantly re-

duces the energy of high-frequency subbands. More specifically,

the transform coefficients in Fig. 17(B) have much smaller mag-

nitudes than those in Fig. 17(A). The corresponding peak map

is shown in Fig. 17(C). In the following section, we will discuss

how this binary peak map can be efficiently encoded.

B. Coding of Peak Map

In PTWT-based image compression, we need to encode the

subband data, as illustrated in Fig. 17(B), as well as the peak

map, and send them to the decoder for image reconstruction.

A number of algorithms have been developed in the literature,

such as EZW (embedded zero-tree wavelet) [17], SPIHT (set

partitioning in hierarchical trees) [6], JPEG2000 [1], to encode

image subband data. In this work, we use the encoder developed
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Fig. 17. (A) Three-level subband decomposition of Barbarawith WT; (B) three-level PTWT subband decomposition; (C) peak map.

Fig. 18. (a) Labeling of image subbands; (b) subband labeling for peak map.

Fig. 19. PT gain versus peak threshold.

in our previous work to encode the subband data [19]. This en-

coder uses a similar encoding mechanism as SPIHT with a sim-

ilar performance. However, its computational complexity and

implementation cost are much lower [19].

1) Overview of Peak Map Coding: The binary peak map

coding has to be lossless. In this work, we observe that the peak

map, as illustrated in Fig. 17(C), bears a significant amount of

correlation with the subband data. This is because, as discussed

in Section IV–B1, the peaks are chosen from those locations

with large high-frequency energy levels. In this work, we pro-

pose to exploit this correlation so as to reduce the coding bit

rate of peak map. Note that the subband data is encoded and is

Fig. 20. Number of peaks versus peak threshold.

available at the decoder. Therefore, we can use the subband data

to predict the peak map. More specifically, at the encoder side,

the image is decomposed level by level (from level 1 to level

) into a series of frequency subbands, as illustrated in Fig. 18.

Correspondingly, at the decoder side, the image should be re-

constructed level by level in a reversed order (from level to

level 1). While we are reconstructing an image subband at level

, image subband data at levels

are already available. This implies that we can use the recon-

structed image subband data in higher levels to predict the peak

map. Conceptually, this approach is similar to motion prediction

in video coding [23].
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Fig. 21. Test images: (a) Lena; (b) Barbara; (c) NBA2; (d) Football2.

To elaborate, the peak map is a binary image with 1s indi-

cating the positions of peaks. We will use a context adaptive

arithmetic coder [20] to encode this binary peak map. As we

know, the key in context adaptive arithmetic coding is to esti-

mate the probability of symbols. In the following, we will de-

velop a scheme to predict the probability of 1s within each re-

gion of the peak map using image subband data. This probability

information will be then used by the context adaptive arithmetic

coder. Two major issues will be discussed: a) linear prediction

of peak map and b) a similarity metric for peak map prediction.

2) Linear Prediction: Our central idea in prediction is to use

a linear combination of the image subbands at higher levels,

which have already been reconstructed, to predict the symbol

(either 0 or 1) probability at each pixel location of the peak map

at the current level. In the following, we use an example to ex-

plain our idea. Fig. 18(a) shows the image subbands and their

labels. Fig. 18(b) shows the subband2 labeling of peak map. In

this example, we encode the H1 subband of peak map which is

represented by a binary matrix of size . We can

use the LH1, LH2, HH2, and HL2 image subbands for predic-

tion. To do this, we up-sample these subbands with bilinear in-

terpolation to the size of and denote these up-sampled image

subbands by . Here, , , is a ma-

trix of transform coefficients of size . A typical value of

ranges from 2 to 5. Let

(26)

which is a linear combination of these image subbands. Here,

the parameters need to be determined. We define a refer-

ence binary image as

(27)

We denote this thresholding operation by and write

(28)

During prediction, we need to select the parameters such

that the similarity between the reference binary image and

peak map is maximized or the dissimilarity between them is

minimized. To this end, we need to introduce a metric to de-

scribe the similarity between two binary images, which will be

explained the following section.

3) Similarity Metric for Peak Map Prediction: Note that the

purpose of our prediction is to accurately estimate the proba-

bility of 1s in such that its arithmetic coding bit rate is mini-

2For convenience, we call a block region of the peak map as a subband.

mized. Therefore, in this work, we propose to use the probability

of 1s at each location to measure the similarity between binary

images and . More specifically, let be the fraction

of 1s within a squared window with size centered at location

in binary image . Likewise, we can also define

for the reference binary image . Here, and

approximate the probabilities of 1s at location in images

and , respectively. We define the dissimilarity between

and as

(29)

It can be seen that represents the average difference

in probability of 1s between and . If is the same or very

close to , the value of is 0 or very small. With this

metric, the prediction problem can be formulated as

(30)

In this work, we just use brute-force search to find the optimum

solution, denoted by at the encoder side since

the value of is small (we use in our experiments). Cer-

tainly, fast search or optimization algorithms can be designed in

the future to speed up the prediction process.

Once are determined, the optimum refer-

ence image is given by

(31)

which will be used as context during the context-adaptive en-

coding of of peak map [20]. The values of

will be encoded and sent to the decoder. At the decoder side,

after the image subbands are decoded, we can also construct the

same reference image for arithmetic decoding of the peak

map.

VI. TRADEOFF BETWEEN PEAK TRANSFORM GAIN

AND OVERHEAD INFORMATION BITS

As discussed in Section IV-B1, we choose those pixels with

high-frequency energy levels larger than a threshold as can-

didate peaks. We then use the dynamic programming approach

presented in Section IV-A to determine which subset of can-

didate peaks minimize the high-frequency subband energy or

maximize the PT gain. If we increase the value of threshold ,

the total number of candidate peaks will decrease. Therefore, the

number of overhead information bits used to encode the peak
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Fig. 22. Compression performance comparison with JPEG2000 and H.264
(INTRA) on image Lena.

Fig. 23. Compression performance comparison with JPEG2000 and H.264
(INTRA) on image Barbara.

map will be reduced. However, the energy reduction by PT will

be less, which results in more coding bits for the subband data.

This leads to a tradeoff between PT gain and overhead informa-

tion bits; and implies that we need to determine the optimum

value of to maximize the overall coding efficiency.

To determine the optimum value of , we need an accurate

rate-distortion model to characterize the rate-distortion behavior

of the PT encoder [21], [22]. This is a challenging task and needs

a significant amount of research efforts. In this work, instead

of pursuing an optimum solution, we propose an empirical ap-

proach which is simple yet efficient. According to our simu-

lation experience, we observe that the optimum threshold is

related to the quantization step size of transform coefficients.

More specifically, the following empirical formula is used in

this work to determine the value of peak threshold:

(32)

where is the quantization step size of transform coeffi-

cients. To justify this empirical formula, in the following, we

take image Barbara as an example. In this experiment, we set

the quantization step size to be and try different

peaks thresholds . Fig. 19 shows the PT gain defined in (25)

for each in a solid line with diamonds. Fig. 19 also shows

Fig. 24. Compression performance comparison with JPEG2000 and H.264
(INTRA) on image Football.

Fig. 25. Compression performance comparison with JPEG2000 and H.264
(INTRA) on image NBA.

Fig. 26. Fraction of peak map bits versus coding bit rate for each test image.

the bit rate gain for each in a solid line with squares. Here,

the bit rate gain is the ratio between the coding bit rates of

image encoders with and without PT. It can be seen that, as

increases, the PT gain decreases. Fig. 20 shows the average

number of peaks per image row for each peak threshold . As
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Fig. 27. Subjective picture quality comparison on image Barbara coded at 0.4bpp: (a) JPEG2000; (b) H.264 INTRA; (c) PT encoding.

increases, more peaks are used for PT, which implies that

more bits will be used to encode the peak map. We can see that

is a reasonable choice for the peak threshold .

This empirical formula is simple. Our experimental results

presented in the following section will show that it is also ef-

ficient. In our future work, we shall study the rate-distortion

modeling problem for PT encoding and develop a systematic

approach to find the optimum peak threshold.

VII. EXPERIMENTAL RESULTS

In this section, we evaluate the data compression performance

of the proposed PT image encoder and compare its performance

with state-of-the-art image encoders, include JPEG2000 and

H.264 INTRA coding. The JPEG2000 image encoder we used

in this performance evaluation is the Jasper JPEG2000 encoder

[24]. In H.264 encoding, we use JM 9.0 H.264 video encoder

(INTRA frames only) with CABAC (context adaptive arithmetic

coding) [25]. The test images (grayscale) of size 512 512 are

shown in Fig. 21. To deal with grayscale images in H.264, we

set the chrominance components (Cb and Cr) of each frame to

be a constant 128. Figs. 22—25 show the PSNR (peak signal-to-

noise ratio) performance of the PT encoder in comparison with

JPEG2000 and H.264 image coding over all test images. It can

be seen that the PT encoder consistently outperforms the other

two image encoders on all test images. For image Barbara, the

PT encoder outperforms JPEG2000 by up to 2.3 dB. Fig. 26

shows the fraction of bits used for encoding peak map as a func-

tion of coding bit rate for each test image. We can see that, as

the overall coding bit rate increases, the fraction of peak map

bits decreases (however, it should be noted that the number of

peak map bits does increase). Fig. 27 shows the images of Bar-

bara encoded at 0.4 bpp by JPEG2000, H.264INTRA, and the

proposed PT encoder. It can be seen that, with PT encoding, the

image has a much better visual quality with enhanced edge in-

formation. This is because the PT encoder is able to efficiently

preserve high-frequency image features using PT and peak map.

VIII. CONCLUDING REMARKS, DISCUSSION, AND

FURTHER RESEARCH DIRECTIONS

The major contribution of this work is that we have intro-

duced a nonlinear geometric transform, called PT, which is able

to convert high-frequency signals into low-frequency ones. Cou-

pled with WT and subband decomposition, the PT is able to

significantly reduce signal energy in high-frequency subbands.

This has significant applications in data compression of 1-D sig-

nals (e.g., speech and acoustic signals) and 2-D images. We

have developed an fast and efficient dynamic solution to find

optimum (or suboptimum) PT to minimize the high-frequency

subband energy or maximize the transform coding gain. We

have also studied how to design an image compression system

based on PT. Our experimental results show that the proposed

PT encoder outperforms the state-of-the-art image encoders, in-

cluding JPEG2000 and H.264 (INTRA).

In our future work, the following issues can be further in-

vestigated. First, as discussed in Section VI, the rate-distortion

behaviors of different modules of the PT encoder need to be

analyzed and modeled so that we can find an optimum tradeoff

between them to maximize the overall coding efficiency. For ex-

ample, the peak selection during dynamic programming can be

coupled with peak map encoding. Some peaks can be dropped if

they do not contribute much to the transform coding gain; how-

ever, they cost a lot of bits to encode. Second, in Section V-B,

we have developed a simple yet efficient way to encode the bi-

nary image of peak map. However, this is not the final solution.

How to efficiently encode a binary image using prediction from

reference images is still an open issue. Third, our current PT de-

sign and PT encoding are still computationally intensive. In the

future, we will study how to optimize the algorithm and speed

up the encoding process.

In this work, we studied one specific application of PT on

lossy image compression. It can be also applied to other sce-

narios of data compression, such as lossless image coding and

acoustic data compression. Since the PT has changed our way

to filter and process signals, we can also find its applications in

other signal processing tasks, such as image denoising and en-

hancement, depending on how the peaks are selected and the PT

is performed.

From an even broader perspective, the concept proposed

in this work—designing a nonlinear transform to convert

hard-to-compress signals into easy ones—is very useful. The

encouraging results in this work motivate us to find more

generic nonlinear transforms or geometric transforms to ex-

plore the inherent correlation among the source data so as to

represent and code the data more efficiently. We hope this paper

could inspire new approaches and more research work along

this direction.
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