
A High-Performance ASIC Implementation of
the 64-bit Block Cipher CAST-128

Takeshi Sugawara, Naofumi Homma, Takafumi Aoki
Graduate School of Information Sciences, Tohoku University

Sendai, Miyagi, Japan
{sugawara, homma}@aoki.ecei.tohoku.ac.jp

aoki@ecei.tohoku.ac.jp

Akashi Satoh
IBM Research, Tokyo Research Laboratory

Yamato, Kanagawa, Japan
akashi@jp.ibm.com

Abstract—We propose a compact hardware architecture for the
64-bit block cipher CAST-128, which is one of the ISO/IEC
18033-3 standard algorithms. Part of the complexity of CAST-
128 is its use of various S-boxes in various sequences, and three
types of f-function are switched depending on the round
numbers. Therefore a large amount of hardware resources are
required for a straight-forward implementation. In order to
create compact CAST-128 hardware, we minimized the number
of S-box components, and merged the three f-functions into one
arithmetic component. The CAST-128 hardware based on the
proposed architecture was synthesized using 0.13-μm and 0.18-
μm CMOS standard cell libraries and small, practical circuits
of 26.4~39.5 Kgates and 189.9~614.7 Mbps were obtained.

I. INTRODUCTION
CAST-128 [1] is a 64-bit block cipher developed by Carlisle

Adams, and its specification was published as RFC 2144 [2]. CAST-
128 was approved by the CSE (Communications Security
Establishment) for use by the Government of Canada [3], and was
also adopted as one of the ISO/IEC standard block ciphers [4]. The
popular e-mail ciphering tool PGP (Pretty Good Privacy) [5][6] uses
CAST-128 as the default algorithm.

CAST-128 has eight different types of 8-bit input and 32-bit
output S-boxes defined as lookup tables, and they are used a number
of times in the key scheduling and data randomization processes. It
also has three different types of 32-bit f-functions. The algorithm can
be efficiently implemented on 32-bit processors, but the large S-
boxes and the three f-functions are problematic in the development
of compact hardware. Therefore, only one hardware implementation
on a FPGA platform with a sufficiently large RAM exists [7], and no
evaluation on an ASIC platform was done, as far as the authors
know.

In this paper, we propose a small CAST-128 hardware
architecture, where a minimum set of S-boxes is used and the three f-
functions are merged by using a unified arithmetic unit. The ASIC
performances of our CAST-128 circuit are evaluated in comparison
with the standard block ciphers AES and DES in 0.13-μm and 0.18-
μm CMOS standard cell libraries.

II. CAST-128 ALGORITHM
The 64-bit block cipher CAST-128 has a Feistel-type data

randomization block as shown in Fig. 1, and three f-functions of

Types 1~3 are switched in accordance with Table I. The 32-bit
additions and subtractions are performed on modulus 232, and the
four S-boxes S1~S4 are 8-bit input and 32-bit output lookup tables
defined by using a bent function.

The key length is variable in the range of 40~128 bits but
divisible by 8. The number of iteration rounds is 12 or 16 for
40~80-bit and 88~128-bit keys, respectively. When an input key is
shorter than 128 bits, zero bytes are padded on the right end. Then
32-bit round keys K1~K4 are generated according to Equations
(1)~(8), where FEDCBA xxxxxxxxxxxxxxxx 9876543210 and

FEDCBA zzzzzzzzzzzzzzzz 9876543210 represent the input key and the
intermediate key with 8-bit granularity, x0 is the most significant
byte, and xF is the least significant byte.

S2
32

S3
32

S4
32

S1
32

32 8

8

8

8

32
Kri<<<

5
Kri

32
32
Kmi

S2
32

S3
32

S4
32

S1
32

32 8

8

8

8

32
Kri<<<

5
Kri

32
32
Kmi

S2
32

S3
32

S4
32

S1
32

32 8

8

8

8

32
Kri<<<

5
Kri

32
32
Kmi

f

32

1

f2

32
L0

R0

L1
R1

L2 R2

f15

f16

L14
R14

L15
R15

L16 R16

Type 1

Type 2

Type 3

1Kr
Km1

2Kr
Km2

15Kr
Km15

16Kr
Km16

S2 S3 S4S1

Addition
Subtraction
XOR

S-boxes

Kri<<< Rotation
Fig. 1. Data randomization block of CAST-128

TABLE I. Type of f-function used in each round

Type Rounds
1 1,4,7,10,13,16
2 2,5,8,11,14
3 3,6,9,12,15

)4(

)3(

)2(

)1(

][6][8][7][6][5

][5][8][7][6][5

][8][8][7][6][5

][7][8][7][6][5

89

7654

94567

98

3120

987654

8

32103210

BBA

FEDC

FEDCBA

A

BA

DCFD

zSzSzSzSzS
xxxxzzzz

zSzSzSzSzS
xxxxzzzz

zSzSzSzSzS
xxxxzzzz

xSxSxSxSxS
xxxxzzzz

⊕⊕⊕⊕⊕
=

⊕⊕⊕⊕⊕
=

⊕⊕⊕⊕⊕
=

⊕⊕⊕⊕⊕
=

)8(
)7(
)6(
)5(

][8][8][7][6][5
][7][8][7][6][5
][6][8][7][6][5

][5][8][7][6][5

014

9233

6452

267981

CFE

DC

BA

zSzSzSzSzSK
zSzSzSzSzSK
zSzSzSzSzSK

zSzSzSzSzSK

⊕⊕⊕⊕=
⊕⊕⊕⊕=
⊕⊕⊕⊕=

⊕⊕⊕⊕=

The key scheduling procedure uses four 8-bit input and 32-bit output
S-boxes S5~S8 that are different from the S-boxes used in the data
randomization. Similar procedures are repeated seven times (as the
order of the input bytes and S-boxes changes) to generate the rest of
the round keys K5~ K32. The round keys K1~K16 are used as the 32-
bit mask keys Km1~Km16 in Fig. 1 without any modification, and the
rotate keys Kr1~Kr16 are the lower 5 bits of each of the sixteen 32-bit
round keys K17~K32. When the number of iteration rounds is 12 for a
short key, Km1~Km12 and Kr1~ Kr12 are used.

III. PROPOSED HARDWARE ARCHITECTURE

A. Data Randomization Block
Fig. 2 shows the data randomization block of our compact CAST-

128 hardware. This datapath can be used for both encryption and

decryption because of the Feistel-network feature of CAST-128.
Four S-boxes S1~S4 and the barrel shifter in Fig. 1 can be shared
between the three f-functions of Types 1~3. A 32-bit adder can
easily support subtraction with minor additional circuitry, and XOR
gates are already included in the adder. Therefore, we designed a
unified arithmetic unit ASX (Add-Sub-OR) shown in Fig. 3, which
switches three arithmetic operations, and merged the three f-
functions into one functional block.

A carry look-ahead scheme is used for addition and subtraction,
considering the balance between speed and gate count. The signals
Sel0 and Sel1 are used to control the operations in ASX. When
Sel0=Sel1=0 in Fig. 3, all of the carry signals C and C1~31 fed to the
ASX units are disabled, and then the 32-bit XOR result between
A0~31 and B0~31 is output to S0~31. To perform subtraction, the signal
Sel0 is set to 1, and then the carry signals are enabled. Sel1 is also set
to 1 so that all A0~31 bits are inverted and 1 is added at the LSB ASX
cell through the carry signal C, and then the two's complement form
of the operand A0~31 is added to B0~31. The carry generation unit CG0
that does not generate the MSB carry is used for mod 232 operation.
Addition between A0~31 and B0~31 is performed by setting Sel0=1
and Sel1=0. When Sel0=0 and Sel1=1, the XNOR result is output to
S0~31, though this operation is not used in the CAST-128 hardware.

B. Key Scheduler
The same S-box is used twice in each of the Equations (1)~(8) for

the key scheduling. Therefore, two sets of S-boxes S5~S8 are
required if each equation is executed in one clock. To minimize the
number of S-boxes, we transformed Equations (1)~(4) and (5)~(6)
into Equations (9)~(12) and (13)~(16), respectively, by executing
each equation in two clocks.

S1

8

Kri<<<

Kmi

5
Kri

S2 S3 S4

8 8 8
32

32 32 32 32

32

32

32 32

2:1

64
Dout

Dreg

64 64
Din

ASX

ASX

ASX

ASX

sel 0
sel 1

C12

C15~13

C16

C19~17

C8

C11~9

C4

C7~5

C3~1

C28

C31~29

C24

C27~23

C20

C23~21

Sel0 1Sel mode
XOR

addition
subtraction

G
P

CG0

G P2 2G P1 1G P0 0C0
C1

C2

P
G

3

3

CG1 3

4

G27~24

P27~24

2

2

6

2

8

C3

G3 2G1 1G0 0C0P P PG3 2P

C

A

B
Sel

1Sel

0

G
P

S

Carry Look-Ahead Unit

A30
B30

A0

B0

A1
B1

A31
B31

Sel01Sel

S31

S30

S1

S0

C1

C30

C31
P30
G30

P1
G1

P0
G0

4

CG1 3

44

G23~20

23~20P

CG1 3

44

G19~16

19~16P

CG0

33

G30~28

P30~28

2
CG0

CG1 3

4

2

2

4

CG1 3

44

CG1 3

44

CG1

44

2 G11~8

P11~8

G7~4

7~4P

G3~0

3~0P

G15~12

P15~12

CG1

1Sel
C1

C2

C3

CG1

ASX cell

0 0
1 0
1 1

Fig. 2. Datapath of data randomization block Fig. 3. Unified arithmetic unit ASX

)10(

)9(

][8][7][6][5
][8

][8][7][6][5
][7

312076547654

987654

32103210

832103210

⎩
⎨
⎧

⊕⊕⊕⊕=
⊕=

⎩
⎨
⎧

⊕⊕⊕⊕=
⊕=

zSzSzSzSzzzzzzzz
xSxxxxzzzz

xSxSxSxSzzzzzzzz
xSxxxxzzzz

ABA

DCFD

)12(

)11(

][8][7][6][5
][6

][8][7][6][5
][5

89

7654

45679898

99898

⎩
⎨
⎧

⊕⊕⊕⊕=
⊕=

⎩
⎨
⎧

⊕⊕⊕⊕=
⊕=

zSzSzSzSzzzzzzzz
xSxxxxzzzz

zSzSzSzSzzzzzzzz
xSxxxxzzzz

BAFEDCFEDC

BFEDC

BABA

BABA

)16(

)15(

)14(

)13(

][8
][8][7][6][5

][7
][8][7][6][5

][6
][8][7][6][5

][5
][8][7][6][5

44

014

933

233

622

452

211

67981

⎩
⎨
⎧

⊕=
⊕⊕⊕=

⎩
⎨
⎧

⊕=
⊕⊕⊕=

⎩
⎨
⎧

⊕=
⊕⊕⊕=

⎩
⎨
⎧

⊕=
⊕⊕⊕=

C

FE

DC

BA

zSKK
zSzSzSzSK

zSKK
zSzSzSzSK

zSKK
zSzSzSzSK

zSKK
zSzSzSzSK

The round keys of CAST-128 cannot be executed in reverse order
for decryption, and thus all the keys are generated and stored in key
registers in advance. Therefore, even though the number of clocks
for key generation is doubled, it has no affect on a number of clocks
required for data randomization.

Fig. 4 shows the datapath architecture of our key scheduler.
There are two paths for output from the two 128-bit registers

FEDCBA xxxxxxxxxxxxxxxx 9876543210 and FEDCBA zzzzzzzzzzzzzzzz 9876543210 .
One path goes to four S-boxes after four bytes are selected by the
“Switching Box,” and the other path is XORed with the S-box
output after one 32-bit data block is selected by a 10:1 multiplexer.
Then the results are fed back to the registers as shown in Equations
(9)~(12). In order to generate four 32-bit round keys K1~K4
(identical to the four mask keys Km1~Km4) by XORing the five S-
box outputs according to Equations (13)~(16), the four 32-bit
registers Km1~Km4 in Fig. 4, and the feedback path of the 10:1
multiplexer is used. The round keys K17~K32 are generated similarly,
but only the lower 5 bits of each key are used as the rotate key.
Therefore, the registers Kr1~Kr16 are 5 bits each. During the rotate
key generation processes the outputs from the 5-bit registers
Kr1~Kr16 are fed back to the XOR-tree through the 10:1 multiplexer.
At that time, the upper 27 bits of the multiplexer output are not used.

IV. PERFORMANCE EVALUATION IN ASIC
The proposed compact CAST-128 hardware architecture

described above was designed and synthesized with two
optimizations, size and speed, by using 0.13-μm and 0.18-μm
CMOS standard cell libraries under the worst case conditions. Tables
II and III show the synthesis results. AES [8] and DES [9] circuits
were also synthesized under the same conditions for performance
comparisons.

Our CAST-128 hardware achieves 26.9 Kgates for size
optimization and 39.5 Kgate for speed optimization using the 0.13-

μm library. The gate counts are 26.4K and 32.8K with the 0.18-μm
library. These numbers are comparable with 26.7 Kgates and 43.6
Kgates of AES hardware with lookup table S-boxes. When we
implement CAST-128 S-boxes using memory, the eight different 8-
bit input (28=256 addresses) and 32-bit output (4 Bytes) lookup
tables requires 256 % 4 Bytes % 8 = 8 Kbytes. In contrast, AES
uses sixteen 256-Byte S-boxes for data randomization, and four of
them for key scheduling, and thus the total capacity is 256 Bytes %
20 = 5.1 Kbytes. AES can generate round keys on-the-fly, but
CAST-128 needs many clocks to generate round keys for encryption,
and cannot generate the keys on-the-fly for decryption. Therefore, all
the CAST-128 round keys should be pre-computed and stored into
large registers (registers Kr1~ Kr16 and Km1~ Km16 in Fig. 4).
Considering these facts, it was unexpected that our compact CAST-
128 hardware architecture would be comparable in size to AES.

However, the highest throughput is 614.7 Mbps by using the 0.13-
μm library with speed optimization, which is only 1/5 of AES. This
depends largely on the structure of cipher algorithms. The Feistel-
type 64-bit block cipher CAST-128 can process only 32 bits at a
time, while the SPN-type 128-bit block cipher AES does 128 bits.
This disadvantage in speed is the same as for the 64-bit block cipher
DES with the Feistel network. The lower frequency of CAST-128,
which is 2/3~1/2 of AES, is another reason for the lower throughput.
This is mainly due to the four 32-bit arithmetic operations in the
CAST-128 f-functions, while AES uses operations on binary fields

S5

8

Kmi

S6 S7 S8

8 8 8

32

Kin

Switching Box

0
32

0
32

0
32

0

x
0~3

x
4~7

x
8~B

x
C~F

z
0~3

z
4~7

z
8~B

z
C~F

8 8 8 8 8 8 8 8 8

32 32 32 32 32 32 32 32

32

32

Km1

Km16

Kr1

Kr16

325

10:1

16:1
32

32x16
Register
Array

5x16
Register
Array

16:1
5

Kri

128

32 32 32 32

Fig. 4. Datapath of key scheduler

where no carry propagation occurs. Additional circuitry in the
critical path is also required to switch the f-functions. By utilizing
the advantage of binary field arithmetic, AES can also achieve a very
compact S-box on the composite field GF(((22)2)2) S-box [10] as
shown in Tables II and III.

The gate counts of DES is much lower than CAST-128, but this is
obviously because DES has only 256 Bytes for eight 6-bit input and
4-bit output S-boxes in total while CAST-128 needs 8 Kbytes. The
throughputs of CAST-128 are only 1/4~1/5 of DES, but triple-DES
that repeats DES three times is recommended because of security
issues. In comparison with triple-DES, the throughput of CAST-
128 is from the same level to half, which is good enough for
practical use. As far as the authors know, only one FPGA
implementation was reported for CAST-128 hardware in [7], and a
throughput of 220 Mbps was obtained for a loop architecture version.
Even though the platforms are different (FPGA and ASIC), our
design achieved the three-times-higher throughput of 614.7 Mbps.

CAST-128 that uses large S-boxes has usually been implemented
as software, but our results show that small and fast ASIC hardware
implementations can be achieved by using our proposed architecture.

V. CONCLUSION
In this paper, we proposed a compact hardware architecture for

the ISO/IEC 18033-3 standard 64-bit block cipher CAST-128. Its
performances were evaluated using 0.13-μm and 0.18-μm CMOS
standard cell libraries and gate counts of 26.4~39.5 Kgates with
throughputs of 189.9~614.7 Mbps were obtained. These gate counts
are almost the same as AES with lookup table S-boxes. The
throughputs are rather low, but good enough for actual use.

We are developing ASIC hardware for all of the other ISO/IEC
standard ciphers such as Camellia, SEED, and MISTY1, and will
report performance comparisons in the near future.

REFERENCES
[1] “CAST Encryption Algorithm Related Publications”

http://adonis.ee.queensu.ca/cast/
[2] C. Adams, “The CAST-128 Encryption Algorithm,” RFC

2114, May 1997.
http://www.ietf.org/rfc/rfc2144.txt

[3] CSE, “IT Security Program - Cryptographic Algorithms,”
http://www.cse-cst.gc.ca/services/crypto-services/crypto-
algorithms-e.html

[4] ISO/IEC 18033-3 “Information technology -- Security
techniques -- Encryption algorithms -- Part 3: Block ciphers,”
Jul. 2005.
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail
?CSNUMBER=37972

[5] “The International PGP Home Page,” http://www.pgpi.org/
[6] J. Callas, et. al, “Open PGP Message Format,” RFC2440, Nov.

1998.
http://www.rfc.net/rfc2440.html

[7] P. Kitsos, N. Sklavos, M. D. Galanis, and O. Koufopavlou,
“64-bit Block ciphers: hardware implementations and
comparison analysis,” Computers and Electrical Engineering,
Vol. 30, Mar. 2005.
http://www.vlsi.ee.upatras.gr/~mgalanis/pubs/caee.pdf

[8] A. Satoh, et. al, “Hardware- Focused Performance Comparison
for the Standard Block Ciphers AES, Camellia, and Triple-
DES,” ISC 2003, LNCS 2851, pp.252-266, Oct. 2003.

[9] http://www.aoki.ecei.tohoku.ac.jp/crypto/index.html
[10] A. Satoh, et. al, “A Compact Rijndael Hardware Architecture

with S-Box Optimization,” ASIACRYPT 2001, LNCS 2248,
pp.239-254, Dec. 2001.

TABLE II. Hardware Performance Comparison of Block Ciphers in a 0.13μm-CMOS ASIC (gate = 2-way NAND)

Algorithm Data Size
(bits)

Key Size
(bits) Cycle S-box Gate

Counts
Critical

Path (ns)
Oper. Freq.

(MHz)
Throughput

(Mbps)
(Kbps
/gate) Optimize

26,853 8.50 117.7 442.9 16.49 Size CAST-128 64 128 17 Table 39,497 6.20 161.3 614.7 15.56 Speed
26,691 5.69 175.8 2,249.6 84.28 Size Table 36,923 3.70 270.3 3,459.5 93.69 Speed
15,512 6.90 144.9 1,855.0 119.59 Size AES [8] 128 128 10

GF(((22) 2) 2) 20,328 4.60 217.4 2,782.6 136.89 Speed
2,768 2.50 400.0 1,600.0 578.03 Size DES [9] 64 56 16 Table 5,534 1.80 555.6 2,222.2 401.56 Speed

TABLE III. Hardware Performance Comparison of Block Ciphers in a 0.18μm-CMOS ASIC (gate = 2-way NAND)

Algorithm Data Size
(bits)

Key Size
(bits) Cycle S-box Gate

Counts
Critical

Path (ns)
Oper. Freq.

 (MHz)
Throughput

(Mbps)
(Kbps
/gate) Optimize

26,428 19.82 50.5 189.9 7.19 Size CAST-128 64 128 17 Table 32,786 12.89 77.6 292.1 8.91 Speed
24,206 11.80 84.7 1,084.7 44.81 Size Table 43,590 6.32 158.2 2,025.3 46.46 Speed
15,990 11.86 84.3 1,079.3 67.50 Size AES [8] 128 128 10

GF(((22) 2) 2) 27,787 7.86 127.2 1,628.5 58.61 Speed
 3,037 3.81 262.5 1,049.9 345.61 Size DES [9] 64 56 16 Table
 6,526 2.81 355.9 1,423.5 218.11 Speed

