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Abstract - This paper aims at discussing the implementation of 
simulation systems for SNN based on analog computation cores 
(neuromimetic ICs). Such systems are an alternative to 
completely digital solutions for the simulation of spiking neurons 
or neural networks. Design principles for the neuromimetic ICs 
and the hosting systems are presented together with their 
features and performances. We summarize the existing 
architectures and neuron models used in such systems, when 
configured as stand-alone tools for simulating ANN or together 
with a neurophysiology set-up to study hybrid living artificial 
neural networks. As a primary illustration, we present results 
from one of the platforms: hardware simulations of single 
neurons and adaptive neural networks modeled using the 
Hodgkin-Huxley formalism for point neurons and spike-timing 
dependent plasticity algorithms for the network adaptation. 
Additional examples are detailed in the other papers of the 
session. 

I. INTRODUCTION 
Neuromorphic engineering is a growing research domain 

that merges insights from neurobiology, computer science 
and IC engineering. A new generation of artificial neural 
networks is emerging, far from the classical sequential ANN 
(Artificial Neural Networks) machines such as Perceptrons. 
These novel ANN are based on computational elements 
qualified as “neuromimetic”, that reproduce the neural 
activity of spiking neural networks (SNN) with a high level 
of precision, as models are based on biophysics properties 
and parameters provided by biologists [1]. Apart from the 
classical software computation, some designers of those SNN 
exploit the analogy between electronics and biology physics; 
the signals are computed in analog mode, and are as a 
consequence available as continuous variables, both in time 
and in value. Analog computation is very competitive when 
considering the integrated circuit density, but has a complex 
design flow. The electrical activity of neural elements can be 
emulated at different degrees of complexity depending on the 
implemented model. The dynamics of their activity can be 
either reproduced to ensure real-time computation, or 
accelerated for faster computation. In the case of real-time 
computation, it is possible to construct mixed living-artificial 
networks, where the silicon neurons are interconnected with 
the biological cells to form “hybrid networks” [2]. 

These features can be variously combined, and result in 
systems optimized to address specific SNN issues.  
We propose to present in this session the design principles 
and examples of different analog-based ICs and systems that 
model neural networks. They compute different neuron 
models at different time scales, and eventually allow 
connections to real neurons. The systems distribution of 
computation between analog and digital circuitry are also 
different. Some systems allow adaptive synaptic connections 
in the emulated neural networks, by computing plasticity 
rules such as STDP (Spike-Timing Dependent Plasticity). 
The five papers in the session will illustrate a range of 
applications, and show how these ANN can be used in 
neurophysiology experiments, for computational neuro-
science issues, or to study computation paradigms.  
 

II. COMPUTATION OF SPIKING NEURAL NETWORKS 

A. Analog or Digital spiking neural networks? 
Spiking neural networks (SNN), closely inspired from 

biology, are now recognized to be an essential simulation tool 
to study information processing by the brain. They are based 
on models that explicitly describe the dynamics of a network 
and take into account the timing of inputs. Information 
processing in such networks is continuous; the precision of the 
dynamics description depends on the choice of the neuron 
model and of the connectivity description. A designer 
intending to implement a computational support for the neuron 
(or compartment) model has different material solutions: 
software, digital hardware, analog hardware.  

While the choice between software and digital hardware is 
often a matter of technical constraints (specially with the 
generalization of FPGAs), clear discussion arguments emerge 
when comparing the implementation of neuron models using 
an analog or a digital solution [3]: 

- analog computation intrinsically provides a continuous 
computation of continuous variables, like in SNN. As a 
consequence, the simulation time scale can be fixed easily 
and precisely (real-time or accelerated). 

- analog SNN can present a high integration density, as one 
wire encodes one signal (instead of N wires to represent a 
N-bits signal), and as one can exploit the primitives of 
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computation from the physics of electronic elements as 
mathematical functions. 

- transistors mismatch in analog design can emulate the 
neurons diversity. 

- digital design presents a much lower design cost, 
including a better time-to-market performance, and an 
easy reconfigurability. 

- design re-use is easier for digital circuits, although it is 
possible to build libraries of analog IPs (see section IV). 

Another important point is the capability of the model to 
cover the variety of features, which appear in the activity of 
the addressed biological neurons (see a review for cortical 
neurons in [4]).  As described in [5], a digital implementation 
of SNN will finally be a compromise between the 
computational cost and the model richness. The digital 
solution presents clear limitations for complex biophysical 
models or for very large networks. We will see in II-B why 
such models are well-adapted to an analog implementation. 
 
B. Models for analog neuromimetic ICs 

Neuromimetic analog ICs exploit the intrinsic current-
voltage relationships of active and passive electronic 
elements to compute the mathematical functions present in 
the neural element models. Models of spiking neurons, that 
reproduce the electrical activity of a neural element (dendrite, 
soma, compartment, point neuron, synapse) are particularly 
well suited to such implementations, as they rely on the 
description of the dynamics of ionic or synaptic currents, and 
of passive circuitry for dendritic trees [1]. These models 
represent each neural element by its equivalent to an 
electrical circuit, replicated in the neuromimetic analog 
circuit. A series of models can be addressed using that 
approach: between the complex Hodgkin-Huxley (HH) 
formalism and the simple Integrate-and-Fire (IF) model, 
many intermediate description levels are possible [1], [5]. 
Some, like the FitzHugh-Nagumo (FN) model, were 
specifically designed to optimize an electronic 
implementation [6]. We can also mention behavioral models, 
designed to fit the activity waveforms of a spiking neuron [7]. 

When considering the dynamics of spiking neural 
networks, and the formation of connectivity patterns, another 
feature appears to be crucial: the plasticity [1]. Synaptic 
plasticity appears to be the primary substrate of long-term 
learning and memory, but non-synaptic plasticity (ie 
plasticity mechanism on biophysics parameters of ionic 
conductances) may also play a role. Neuromimetic devices 
also compute plasticity mechanisms when they are dedicated 
to networks simulation. The Spike-Timing Dependent 
Plasticity (STDP) algorithms applied to synaptic connections 
are the most commonly used models [8], [9]; they induce an 
important computational cost, and necessitate a dynamic 
control of the connectivity.  
 
C. Issues in analog SNN 

Figure 1 indicates the actual trends in the development of 
analog-based systems for simulating SNN. As an illustration, 
we positioned on the graph the systems described in this 

session (see IV, [10], [11], [12], [13]). The three axes 
represent: (x) The model complexity, strongly linked to its 
biological relevance. We note here the difference between 
point neuron models, where a neuron is a single computational 
element, and compartmental models that take into account the 
cells morphology. (z) The size of the network, evaluated by its 
number of neurons. (y) The simulation time scale referenced 
to the biological time scale; 100 on this axis is real-time. The 
white zone in this graph corresponds to analog-based systems 
existing or under development.  

The first point we observe in that performance graph is the 
limitation of the network size for detailed models: 
conductance-based models like Hodgkin-Huxley models, or 
compartmental models present a high silicon cost for a more 
accurate computation, that limits the number of neurons on a 
single chip. Another limitation is due to the connectivity 
issues for large networks of IF models, that generally include 
dynamic STDP. The connectivity question is generally 
addressed by using event-based protocols to transmit the 
information in the network, using a digital interface. 

 

Figure 1.  Performances of analog-based systems of SNN. Some systems (as 
Indiveri(07) [13]) process spikes on an event-based basis at a constant time 

scale (fixed for a given experiment). 

III. IMPLEMENTATION SOLUTIONS 
Since the first “Silicon Neuron” by M. Mahowald [14], 

different groups developed hardware simulations systems 
based on analog or mixed neuromimetic circuits. The 
simulated neural element can be either integrated on a single 
chip or distributed on multiple chips, due to integration 
constraints. Figure 2 presents a non exhaustive list of 
neuromimetic systems with analog cores, developed in the last 
15 years ([2], [10] to [19]). Those systems compute various 
models of SNN, and can eventually be used for hybrid 
networks experiments. An interesting point is the emergence 
of mixed system, in which computation is shared between 
analog and digital elements. The digital hardware is in such 
case in charge of the connectivity computation and/or control. 
As mentioned earlier, the cost of connectivity increases 
following a quadratic law with the network size. More and 
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more neuromimetic systems will present such mixed A/D 
architectures.  

The analog ICs modeling SNN implement the models 
described in II-B (IF, FN, HH). We labeled SHH the HH-
inspired models where some of the conductance functions are 
simplified or fitted, opposed to the complete Hodgkin-Huxley 
description of voltage and time-dependent ionic conductances  

 

Figure 2.  Computation distribution in various SNN analog-based systems. 

IV. AN ANALOG-BASED SIMULATION SYSTEM 
We present in that section a mixed A/D platform we 

developed to emulate SNN. In this system, ICs emulate in 
real-time and analog mode conductance-based models of 
neurons and synapses; synaptic interactions, subject to short-
term and long-term mechanisms, are digitally processed using 
both hardware and software material. The whole simulation 
system is organized in 3 layers: software, digital hardware and 
analog. The analog hardware layer runs the continuous and 
real-time computation of the neurons and synapses ionic 
currents. The analog ICs are controlled by the digital hardware 
layer. This hardware is in charge of computing spike events 
information from the analog neurons, and of controlling the 
synaptic connectivity back to the analog hardware. Although 
the processing mode is globally event-based to optimize 
computational speed, the spikes are time-stamped to ensure 
real-time at the event level. The upper layer includes the 
software driver and interface, in charge of controlling the bi-
directional data transfer to the software via a PCI bus. Finally, 
a PC running a real-time operating system hosts software 
functions to eventually compute the connectivity dynamics 
functions in the neural network. The software also includes 
user interface functions to control the off-line and on-line 
simulation configuration. 

The neuromimetic ICs were designed as application 
specific ICs (ASICs) to compute in analog mode conductance-
based models based on the Hodgkin-Huxley formalism 
discussed in section II. Individual neurons produce action 
potentials that express their intrinsic dynamic properties, as 
well as their response to stimulations (stimulations are 
currents, flowing from synapses or from other sources). The 
full custom ASICs are designed using a library of electronic 
functions we developed previously [20] in order to optimize 
design re-use. Each mathematical function appearing in the 

neuron model corresponds to an analog module in the library, 
with inputs for tunable parameters, stored on-chip in analog 
memory cells. The modules are arranged to generate 
electronic currents that emulate ionic or synaptic currents 
(figure 3). The parameters are also used to compensate 
intrinsic diversity of ICs. Finally, the computational cores of 
the ASICs are configured to fit different types of ionic 
channels and form the targeted neuron model.  

 

Figure 3.  Architecture of the neuromimitic ICs : a set of conductances and 
functions are configured by digital layers to perform versatile types of neural 

models following the HH formalism. 

While the neuron activity is computed in analog mode 
(membrane voltage, presenting continuous action potentials), a 
1-bit digital representation is also available; conversion is 
done using a threshold comparator. The digital outputs 
transmit the spikes ‘events’, computed by the digital layers of 
the system. They are used for the calculation of the synaptic 
interactions that take into account the spikes exact timing 
(according to a 2 MHz timer). 

The models for synaptic interactions are pulse-based 
kinetic models of synaptic conductances [20]. The dynamics 
of the synaptic channels are captured using a two-state (open-
closed) scheme. This model easily handles phenomenon like 
summation or saturation, and describes precisely the time 
course of the synaptic interactions. Furthermore, this model is 
easily integrated on hardware in the form of multi-synaptic 
elements. Pre-synaptic events are gathered on a single wire to 
generate the synaptic pulses, applied to the post-synaptic 
neuron. Each pulse triggers the transition to the opening state 
of the synaptic channels. The pulse width is modulated to 
encode the stimulation strength and is dynamically updated by 
the digital layers, according to the plasticity algorithms. The 
analog signals (membrane voltage, ionic current) are also 
exploited in experimental configurations, such as “hybrid 
networks”; in that case, dedicated on-chip conductances are 
used as artificial synapses that communicate in real-time with 
in vitro biological neurons [2]. 

The next figures present experimental results obtained 
using the presented platform. Figure 4 is a plot of a neuron 
membrane voltage, available as a system output. The 
implemented model is a 5-conductance model (sodium, 
potassium, calcium, calcium-dependent potassium and leak 
channels) and presents a spiking activity with frequency 
adaptation due to the calcium-dependent potassium channel. 
Figure 5 is a simulation of an adaptive network, organized as a 
reciprocal inhibition network with 6 neurons. This SNN 
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produces an alternated activity, as in locomotion mechanisms. 
At the beginning of the simulation, we randomize the weights 
of the synapses; E1 and E2 are tuned to oscillate around 
10 Hz. A STDP algorithm [1] is dynamically processed on all 
synapses. After a few seconds of real time simulation, the 
network converges to the expected result: (E1, M1) and (E2, 
M2) respectively show a biphasic activity pattern. Excitatory 
synapses have converged to the maximum weight, while 
inhibitory synapses stabilize to medium values. 

 

Figure 4.  A single neuron real-time simulation with biological equivalent 
scales. A) Neuron membrane voltage. B) Stimulation current  

These 2 examples prove the functionality of this 
configurable simulation system for neuromimetic SNN. The 
analog architecture ensures real-time processing whatever the 
network size. This size is limited by the complexity of the 
model implemented on the ICs, but this system is powerful 
enough to be used as a tool for computational neuroscience. 
Series of experiments addressing biologically-significant 
questions are currently in progress. 

V. CONCLUSION 
We have presented the design principles for neuromimetic 

analog ICs and the associated systems simulating SNN. The 
aim of such systems is not to compete with classical software 
simulators, but rather to offer alternative solutions with 
identified strong points: a constant computational speed due to 
parallel processing features of analog ICs, the easy 
connectivity of hardware-based SNN with hardware or living 
sensors and actuators, and the strong link with the demanding 
research in embedded biomedical devices. This 
interdisciplinary research topic will clearly go on increasing 
its activity, as the applicative field expands together with the 
hardware capacities.  
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