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Abstract— Recently, a new subspace-based blind channel es-
timation algorithm in cyclic prefix (CP) system was reported.
A persistency of excitation (PE) property of the input signal is
required for the algorithm to work. In this paper, the probability
of fulfilling the PE property under different situations is studied.
Four factors in the algorithm affect the PE property of the input
signal: 1) signal constellation used; 2) precoder coefficients; 3)
number of consecutive blocks; 4) a number called the repetition
index. Theoretical derivations as well as numerical simulations
are given to demonstrate the main points of this paper. Important
conclusions are 1) that the probability of fulfilling the PE
property increases and converges to unity when the number
of received blocks increases but is always upper-bounded by
a value less than unity when the repetition index increases;
2) that the probability of fulfilling the PE property is smaller
when the algorithm is applied in orthogonal frequency division
multiplexing (OFDM) systems than in single-carrier-cyclic-prefix
(SC-CP) systems. 1

I. INTRODUCTION

Blind estimation of channel coefficients for communication
systems with cyclic prefix (CP) in the transmitter has recently
become a problem of interest in the literature [1]–[5]. This
is partly due to the growing popularity of CP systems in
the standards of orthogonal frequency division multiplexing
(OFDM) and single-carrier cyclic prefix (SC-CP) systems.
Among many blind methods proposed in the literature, meth-
ods based on subspace decomposition [1]–[4] are considered
to possess attractive features such as applicability to arbitrary
signal constellations with a reasonable computational com-
plexity. However, subspace-based methods usually rely on a
certain kind of persistency of excitation (PE) property of the
input signals. Under such a constraint, the minimum required
number of received blocks (or received OFDM symbols) had
been considered to be around twice the block size [4]. This
becomes one of the disadvantages of a subspace-based blind
estimation algorithm especially when the channel coefficients
are fast-varying.

More recently, Su and Vaidyanathan proposed a new gen-
eralized subspace-based algorithms [11] using a concept of
repetition index which requires a relaxed form of the PE
property. The relaxation of the PE property makes the new
algorithm potentially able to work using only three received
blocks (or OFDM symbols). However, the reliability of the
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algorithm still depends on the conditions required to fulfill
the PE property, which are still under investigation, especially
when the number of blocks used at the receiver is small. In this
paper, we study the conditions under which this PE criterion is
satisfied. The roles of different constellations, precoders, num-
ber of received blocks, and repetition indices are considered.
Several theorems will be derived and numerical simulations
will also be presented to demonstrate the discoveries. An
important result is that the PE property is more likely to be
satisfied for SC-CP systems than OFDM systems.

The rest of this paper is organized as follows. Section II
briefly reviews the algorithm proposed in [11]. In Section III,
theories of persistency of excitation for the algorithm are pre-
sented. In Section IV, numerical simulations are presented to
give a clearer view on the subject studied. Finally, conclusions
are made in Section V.

A. Notations

Boldfaced lower case letters represent column vectors. Bold-
faced upper case letters and calligraphic upper case letters are
reserved for matrices. Superscripts T , and † as in AT , and
A† denote the transpose and transpose-conjugate operations,
respectively. All the vectors and matrices in this paper are
complex-valued. The notation WM denotes ej2π/M , and WM

is the M × M normalized DFT matrix whose kl-th entry is
W

−(k−1)(l−1)
M /

√
M . Column and row indices of all matrices

and vectors begin at one. IM is the M × M identity matrix,
and 0m×n is the m×n zero matrix. C is the set of all complex
numbers. If v =

[
v1 v2 · · · vm

]T
is an m × 1 vector,

we use Tn(v) to denote the (m + n − 1) × n Toeplitz matrix
[9] whose first column is [vT ,0T

(n−1)×1]
T and whose first row

is [v1,01×(n−1)].
Due to the special property of cyclic prefixes, we will use

the following notation extensively in this paper. Suppose y is
an m×1 column vector y =

[
y1 y2 · · · ym

]T
. Then the

notation [y]ab denotes the (b − a + 1) × 1 vector

[y]ab =
[

ya ya+1 · · · yb

]T

if 1 ≤ a ≤ b ≤ m. An extension of this definition to any
arbitrary pair of integers a and b satisfying a ≤ b is made
by defining yk as y(k−1 mod m)+1 for any k > m or k < 1.

For example, if y =
[

y1 y2 y3

]T
, then [y]−1

7 denotes

the vector
[

y2 y3 y1 y2 y3 y1 y2 y3 y1

]T
.
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Fig. 1. A typical cyclic prefix system.

II. REVIEW OF THE BLIND ALGORITHM IN CP SYSTEMS

Figure 1 shows a typical communication system with cyclic
prefix (CP) introduced in each transmitted block. Source
samples sk(n) are drawn from a finite signal constellation
S ⊂ C−{0}. The signal s(n) passes through a linear precoder
characterized as an M ×M invertible matrix R and becomes
uM (n) = Rs(n). A cyclic prefix ucp(n) = [uM (n)]M−L+1

M
of length L is inserted at the beginning of each block and forms
vectors u(n) = [ucp(n)T ,uM (n)T ]T of size P = M + L.
Vectors u(n) are then serialized and sent to the channel
characterized as an FIR filter H(z) =

∑L
k=0 hkz−k whose

order is upper bounded by L. At the receiver each received
sample is corrupted by an additive white Gaussian noise and
then blocked into vectors y(n) of size P .

Given the number of collected blocks J and repetition
index Q, the following algorithm blindly estimates the channel
coefficients h =

[
h0 h1 · · · hL

]
using received blocks

y(n) only, without knowledge of u(n). Due to space limit, the
algorithm presented below is in its simplest form. Readers with
interest in more details of the algorithm are referred to [10],
[11].

Algorithm 1:

1) For two consecutive blocks y(n − 1) and y(n), define

ȳk(n) =


 [yM (n − 1)]−k+1

M
ycp(n)

[yM (n)]1M+Q−k−1


 ,

where k = 0, 1, ..., Q − 1. It can be shown that

ȳk(n) = H̄Qūk(n) + noise (1)

where

H̄Q =

[
Hcir 0M×(M+Q−1)

0(L+Q−1)×(M−L) HL+Q−1 0(L+Q−1)×(M−L)

0M×(M+Q−1) Hcir2

]
,

(2)
and

ūk(n) =

[
[uM (n − 1)]−k+1

M

[u′
M (n)]1M+Q−k−1

]
. (3)

Here, Hcir is an M × M circulant matrix [8] whose
first column is

[
hT 0T

M−L−1

]T
, Hcir2 is obtained

by permuting the last L columns of Hcir to the front

and is still a circulant matrix, and Hk := Tk(h)T is a
k × (L + k) Toeplitz matrix.

2) Construct a (2M + Q + L − 1) × Q matrix

YQ(n) =
[

ȳ0(n) ȳ1(n) · · · ȳQ−1(n)
]
.

It follows immediately from (1) that

YQ(n) = H̄QUQ(n) + noise (4)

where

UQ(n) =
[

ū0(n) ū1(n) · · · ūQ−1(n)
]

(5)

is a (2M + Q − 1) × Q matrix.
3) For consecutive J blocks y(0), y(1), ... y(J − 1),

construct the (2M + Q + L − 1) × Q(J − 1) matrix

Y(J)
Q =

[
YQ(1) YQ(2) · · · YQ(J − 1)

]
. (6)

Then we have

Y(J)
Q = H̄QU(J)

Q + noise

where

U(J)
Q =

[
UQ(1) UQ(2) · · · UQ(J − 1)

]
(7)

is a (2M + Q − 1) × Q(J − 1) matrix.

4) Assume U(J)
Q has full row rank 2M + Q + L − 1 and

perform SVD on Y(J)
Q so that

Y(J)
Q =

[
Us Un

] [
Σs 0
0 Σn

] [
V†

s

V†
n

]
where the diagonal entries of Σn are the L smallest
singular values of Y(J)

Q .
5) Construct the (2M + Q− 1)L× (L + 1) matrix G using

elements of Un as described in Section III-A of [10].
6) Let ĥ be the eigenvector of G†G associated with the

smallest eigenvalue. This is the estimated channel vector
within a scalar ambiguity.

Although the algorithm described above does not require
exact knowledge of the values of s(n) and R, an assumption
is made in Step 4 that U(J)

Q has full row rank. This is the
persistency of excitation (PE) property of the algorithm stated
above. The conditions under which this PE assumption is true,
rather than the algorithm itself, are the main focus of this
paper.

III. THEORETICAL RESULTS

A. A Necessary Condition for U(J)
Q to Have Full Row Rank

A necessary condition for U(J)
Q to have full row rank is

described below.
Lemma 1: U(J)

Q has full row rank (2M + Q − 1) only if

(J − 2)Q ≥ 2M − 1. (8)

Proof: Observe that U(J)
Q has (2M + Q − 1) rows

and Q(J − 1) columns. The lemma is readily verified by
recognizing that the number of columns cannot be less than
the number of rows in order to make a matrix full row rank.
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Lemma 1 imposes a restriction on the choices of parameters
J and Q for the blind algorithm. However, a choice of J

and Q satisfying (8) does not automatically guarantee U(J)
Q

having full rank since it depends on the contents of U(J)
Q ,

which ultimately are dependent on the source data s(n) and
the precoder matrix R. As long as the contents of s(n) are
chosen from a finite constellation S, there is always a nonzero
probability that U(J)

Q is rank-deficient. To see this, simply

consider the extreme case where the contents of U(J)
Q are

always chosen as identical values. Since there is no guaranteed
conditions for U(J)

Q to have full rank, it would be of interest

to study the probability of U(J)
Q having full rank given signal

constellation S, precoder R, and the values of J and Q.

B. The Probability of U(J)
Q having full rank

Definition 1: Consider a finite constellation S ⊂ C − {0}
(which has at least two elements) and an M ×M nonsingular
precoder R ∈ C

M×M . Let each element of the M ×J matrix
S =

[
s(0) s(1) · · · s(J − 1)

]
be independently

selected from the constellation S with equal probabilities for
each element in S. Let uM (n) = Rs(n) and let U(J)

Q be
defined as in Eq. (7). For J ≥ 2, Q ≥ 1, the probability that
U(J)

Q has full rank will be denoted as PS,R (J,Q).

Obviously, PS,R (J,Q) = 0 whenever (J − 2)Q < 2M − 1
since (8) is violated. From the discussions above, we have
PS,R (J,Q) < 1 for all J and Q as long as S is a finite set.
The probability, however, can be increased by increasing J . It
can be shown that

PS,R (J + 1, Q) ≥ PS,R(J,Q) (9)

since the row rank of a matrix never decreases when additional
columns are appended. Furthermore, it can be proved that

lim
J→∞

PS,R (J,Q) = 1

for any constellation S and precoder R (and any Q ≥ 1). How-
ever, increasing J means more data needs to be accumulated
at the receiver which causes a delay in channel estimation. In
addition, in the case when a time-varying channel is present,
a larger J makes the channel estimate less meaningful since
the channel coefficients may have changed significantly while
J blocks are being accumulated.

Increasing Q, on the other hand, does not require additional
data and hence does not have the drawback described above. It
can be shown that increasing Q also helps increase the value
of PS,R (J,Q). Using the following theorem, it can be shown
that

PS,R (J,Q + 1) ≥ PS,R(J,Q). (10)

Theorem 1: If U(J)
Q has full row rank (2M + Q− 1), then

U(J)
Q+1 also has full row rank (2M + Q).

Proof: Assume U(J)
Q+1 does not have full row rank while

U(J)
Q does. Then there exists a nonzero row vector vT =[
v1 · · · v2M+Q

]
such that vT U(J)

Q+1 = 0T . From the
definition in Eq. (7), we obtain that vT is a left annihilator
of UQ+1(n) for 1 ≤ n ≤ J − 1. The notation of UQ(n)

was defined in Eq. (5). Notice that UQ(n) is a submatrix of
UQ+1(n) and can be obtained by removing the first row and
the first column of UQ+1(n), or by removing the last row
and the last column of UQ+1(n). This means that both vT

1 =[
v1 · · · v2M+Q−1

]
and vT

2 =
[

v2 · · · v2M+Q

]
are

left annihilators of UQ(n) for 1 ≤ n ≤ J . So vT
1 U(J)

Q =
vT

2 U(J)
Q = 0T . Since vT is nonzero, at least one of vT

1 and

vT
2 must also be nonzero. This implies that U(J)

Q does not
have full rank and contradicts the assumption.

Although increasing Q never decreases PS,R (J,Q),
PS,R (J,Q) can never approach unity even when Q → ∞.
The probability of U(J)

Q having full rank always stops
increasing when Q ≥ 2M − 1. This is a consequence of the
following theorem.

Theorem 2: If U(J)
Q does not have full rank when Q =

2M − 1, then U(J)
Q does not have full rank for any Q.

Proof: See [11].

Combining Theorems 1 and 2, we immediately have

PS,R (J,Q) = PS,R (J, 2M − 1)

for any Q ≥ 2M − 1. Now, given S, R, and J ≥ 3, the value
PS,R (J,Q) is zero when Q < (2M−1)/(J−2). PS,R (J,Q)
first becomes nonzero when Q = �(2M − 1)/(J − 2)	. From
now on, PS,R (J,Q) may keep increasing until Q = 2M − 1,
when PS,R (J,Q) reaches its upper bound. In summary,

0 = PS,R (J,Q) |1≤Q<Qmin
< PS,R (J,Qmin)

≤ PS,R (J, 2M − 1) = PS,R (J,Q)|Q≥2M−1 < 1,

where Qmin := �(2M − 1)/(J − 2)	.

IV. NUMERICAL SIMULATIONS

In the previous section we understand that the value of
PS,R (J,Q) increases in general as J or Q increases. However,
we have not had a chance to look at the real values of
PS,R (J,Q). Since a close-form expression of PS,R (J,Q)
is difficult to obtain, we perform numerical simulations to
obtain approximate values of PS,R (J,Q). The simulations
are performed with three commonly used constellations in
communications: BPSK (S = {±1}), QPSK (S = {±1,±j}),
and 16-QAM (S = {a + bj|a, b ∈ {±1,±3}}). The M × M
precoder R is chosen as IM for SC-CP systems and W†

for OFDM systems. Although the exact probability of U(J)
Q

having full rank can be actually obtained by testing all possible
transmitted data, an exhaustive simulation is barely feasible.
For each J ≥ 3, the simulations are performed for two
values of Q: Q = 2M − 1 and Q = �(2M − 1)/(J − 2)	.
More than 1,000 independent realizations of U(J)

Q were used
to evaluate the value PS,R (J,Q) for any given S, R, J ,
and Q. When Q = 2M − 1, the simulation gives an upper
bound of PS,R (J,Q) for a given J and the simulation where
Q = �(2M − 1)/(J − 2)	 gives a lower bound of nonzero
PS,R (J,Q). M is chosen as 16.

Figures 2 and 3 show the results when the precoder R is
chosen as an identity matrix IM (SC-CP) and a normalized
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Fig. 2. The probability of U
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Q having full rank in SC-CP systems.

IDFT matrix W† (OFDM), respectively. Some comments on
these results are made below.

1) As expected, the probability of U(J)
Q having full rank is

smaller when a smaller constellation is used or when J
is smaller. When J ≥ 12, the probability becomes very
close to unity for all combinations of constellations and
precoders. When a 16-QAM constellation is used, the
probability is already very high when J = 5.

2) It should be especially noted that the probability of U(J)
Q

having full rank is significantly smaller when R is chosen
as the IDFT matrix than when R is an identity matrix.
An explanation of this phenomenon can be found in [11].
This phenomenon suggests the algorithm proposed in [10]
is more stable when operated in SC-CP systems than in
OFDM systems when the constellation is small and/or
when J is small.

3) Finally, although the theory suggests

PS,R (J, 2M − 1) ≥ PS,R

(
J,

⌈
2M − 1
J − 2

⌉)
,

in simulation the above two quantities look almost the
same so that a conjecture may be made that

PS,R (J,Q) = PS,R

(
J,

⌈
2M − 1
J − 2

⌉)

for any Q ≥ �(2M − 1)/(J − 2)	. This conjecture,
however, has not yet been verified or disproved.

V. CONCLUSIONS

In this paper we studied the persistency of excitation (PE)
property in a recently reported blind channel estimation al-
gorithm in cyclic prefix (CP) systems, which is an essential
property for the algorithm to work properly. Specifically, the
probability of the special-structured matrix U(J)

Q to have full
rank is studied for different constellations, precoders, numbers
of blocks J , and repetition indices Q. Theoretical derivations
as well as numerical simulations indicate that the probability of
PE converges to unity when J → ∞, but it stops increasing
with Q if Q ≥ 2M − 1. In addition when the precoder R
is chosen as an IDFT matrix, the probability of PE is much
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Fig. 3. The probability of U
(J)
Q having full rank in OFDM systems.

smaller than when R is chosen as the identity matrix. This
suggests higher stability for the recently reported algorithm to
work on single-carrier-cyclic-prefix (SC-CP) systems than on
OFDM systems, especially when the number of blocks J is
small.

In the future it remains of interest to theoretically prove or
disprove the conjecture raised in remark 3) of Section IV.
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