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A Matrix Pseudoinversion Lemma and Its Application
to Block-Based Adaptive Blind Deconvolution

for MIMO Systems
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Abstract—The matrix inversion lemma gives an explicit formula
of the inverse of a positive definite matrix added to a block of
dyads (represented as �) as follows: � � ��

�

� �

� � � � � �
� � �. It is well known in the litera-

ture that this formula is very useful to develop a block-based recur-
sive least squares algorithm for the block-based recursive identifi-
cation of linear systems or the design of adaptive filters. We extend
this result to the case when the matrix is singular and present
a matrix pseudoinversion lemma along with some illustrative ex-
amples. Based on this result, we propose a block-based adaptive
multichannel superexponential algorithm. We present simulation
results for the performance of the block-based algorithm in order
to show the usefulness of the matrix pseudoinversion lemma.

Index Terms—Adaptive superexponential algorithm, blind de-
convolution, block-based recursive least squares algorithm, matrix
pseudoinversion lemma.

I. INTRODUCTION

T HE FAMILIAR matrix inversion lemma states that the in-
verse of a positive definite matrix added to a block

of dyads (represented as ) can be represented as

(1)

where is an matrix and the superscript denotes
the complex conjugate transpose (or Hermitian) operation. It is
widely known in the literature that this formula is very useful
to develop a block-based recursive least squares algorithm for
the block-based recursive identification [1], [2] or the design of
adaptive filters [3].

In the late 1980s, Ogawa extended the matrix inversion
lemma in (1) to the case when is positive semidefinite [4].
However, his extension is valid under the condition that the
range of includes the range of , but this condition is very
restrictive and is not satisfied for adaptive signal processing in
a nonstationary environment.
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TABLE I
COMPARISON OF THE NUMBERS OF FLOATING-POINT OPERATIONS���� �

TABLE II
COMPARISON OF THE EXECUTION TIMES (IN SECONDS)

In this paper, we extend the matrix inversion lemma in (1)
to the case when the matrix is positive semidefinite without
the aforementioned condition for the ranges of the relevant ma-
trices and present a matrix pseudoinversion lemma together with
some illustrative examples [5]. Such a singular case may occur
in a situation where a problem dealt with is overdetermined in
the sense that it has more equations than unknowns [6]. In par-
ticular, we encountered this singular situation when we devel-
oped a sample-based adaptive version of the superexponential
method for the blind deconvolution of multi-input–multioutput
(MIMO) systems, where the number of its outputs is greater than
the number of its inputs. It should be noted that our previous
work on the matrix pseudoinversion lemma is restricted to the
case when the added matrix is a single dyad (i.e., is a
column vector) [7]–[9]. Therefore, we can confirm some differ-
ences between the present work and the previous one, e.g., see
Remark 2 and Tables I and II.

After the presentation of the matrix pseudoinversion lemma,
we apply this lemma to block-based adaptive blind deconvo-
lution of a MIMO system. About recent research works of the
blind techniques for MIMO systems, a lot of blind deconvolu-
tion techniques for MIMO systems have been proposed until
now. For example, the multichannel blind deconvolution using
a general state-space approach has been proposed [10]. Also,
some blind channel estimation methods have been proposed,
e.g., [11]–[13]. In this paper, we propose a block-based adap-
tive version of the multichannel superexponential algorithm
(MSEA) for the blind deconvolution.
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We also include simulation results for the performance of the
proposed algorithm in order to show its effectiveness, where
we compare the performance of the proposed algorithm using
the lemma with that of the algorithm using the built-in func-
tion in MATLAB version 7.1.0 for calculating pseudoinverses
of the relevant matrices instead of using the lemma. We should
note that a performance result of a block-based adaptive multi-
channel superexponential deflation algorithm is shown in [14].

This paper uses the following notation: Let denote the set
of all integers, denote the set of all complex numbers, and

denote the set of all matrices with complex com-
ponents. The superscripts , , , and denote the transpose,
the complex conjugate, the complex conjugate transpose (Her-
mitian), and the (Moore–Penrose) pseudoinverse operations of
a matrix, respectively. The symbol denotes the direct sum of
subspaces or the direct sum of matrices, and the superscript
denotes the orthogonal complement of a subspace [15]. A matrix

is called a dyad (or dyadic matrix) if can be repre-
sented as with and . Thus, a Hermitian
dyadic matrix can be described as . The range space
(or image) and the null space (or kernel) of are de-
noted by and , respectively [16]. Let stand
for .

II. MATRIX PSEUDOINVERSION LEMMA: A GENERAL CASE
WITH A BLOCK OF DYADS

The following lemma gives an explicit formula of the pseu-
doinverse of a positive semidefinite Hermitian matrix added
to a block of Hermitian dyads (represented as ).

Lemma 1: Let be a positive semidefinite Hermi-
tian matrix and be a matrix decomposed uniquely as

(2)

Let be defined as

(3)

Then, the pseudoinverse of the matrix is explicitly ex-
pressed, depending on the values of matrices and , as
follows:

1) If , then

(4)

2) If and , then

(5)

3) If and , then

(6)

where and are respectively defined by

(7)

(8)

with

(9)

(10)

Here, denotes the set of all matrices with
real components.

Remark 1: It is possible to rewrite (8) and (10) as follows:

(11)

(12)

The proof of Lemma 1 is very lengthy and so is relegated to
Appendix A.

Remark 2: A technical important fact in Lemma 1 is that there
really exists the inverse of the matrix defined as

(13)

in (8) even if is not positive definite. The proof of the existence
is not easy and requires a notion of orthogonal projectors along
with a geometric approach to linear transformations [16]. This is
a key point which is different from the case where is a column
vector [7]–[9]. The proof of the nonsingularity of matrix is
shown in Appendix B.

It can be seen that the first and second expressions of the pseu-
doinverse given in Lemma 1 can be included as special cases in
the third expression of the pseudoinverse given in (6). Namely,
we have the following theorem.

Theorem 1: Under the same conditions in Lemma 1, it fol-
lows that

(14)

where and are defined by (7) and (8), respectively. The
proof of Theorem 1 is shown in Appendix C.

Remark 3: In the late 1980s, Ogawa extended the matrix in-
version lemma to the singular case and presented an operator
pseudoinversion lemma [4]. Instead of the adding term in
(3), he treated a more general adding term where
is an operator and is a positive definite operator, but he gave
the operator pseudoinversion lemma under the condition

(15)

Therefore, case 1) of Lemma 1 is included in the case that he
considered, but the other two cases, namely, 2) and 3), are not
treated by him. We should note that the aforementioned condi-
tion does not hold true in a nonstationary environment for the
blind deconvolution of MIMO systems.
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In order to present illustrations of the matrix pseudoinversion
lemma, we demonstrate illustrative examples in Appendix D for
the reader’s convenience.

III. APPLICATION TO BLOCK-BASED ADAPTIVE
BLIND DECONVOLUTION

We consider a MIMO system with inputs and outputs as
described by

(16)

where is an -column vector of input (or source) signals,
is an -column vector of output signals, and is an

matrix sequence of impulse responses.
The transfer function of the channel is defined by

(17)

To recover the source signals, we process the output signals
by an deconvolver (or equalizer) described by

(18)

where is the impulse response of the cascade system
of the unknown system and the deconvolver . The
impulse response of the cascade system is defined by

(19)

The objective of multichannel blind deconvolution is to con-
struct a deconvolver that recovers the original source sig-
nals only from the measurements of the corresponding outputs.
For the time being, it is assumed for theoretical analysis that the
noise term in (16) is absent. However, all the signals and
the parameters of the systems are allowed to be complex valued.

We put the following assumptions on the channel, the source
signals, and the deconvolver.

A1) The transfer function is stable and has full
column rank on the unit circle (this implies that
the unknown system has less inputs than outputs, i.e.,

and that there exists a left stable inverse of the
unknown system).
A2) The input sequence is a complex zero-mean
non-Gaussian random vector process with element pro-
cesses , with being mutually independent.
Moreover, each element process is an independent
and identically distributed process with a nonzero variance

and a nonzero fourth-order cumulant . The variances
’s and the fourth-order cumulants ’s are unknown.

A3) The deconvolver is a FIR system of sufficient
length so that the truncation effect can be ignored.

Remark 4: As to A1), if the channel is FIR, then a con-
dition of the existence of a FIR deconvolver is
for all nonzero [17]. Moreover, if is irreducible,
then there exists an equalizer of length

, where is the length of the channel [17]. Moreover, it
is shown in [18] and [19] that there exists generically (or ex-
cept for pathological cases) an equalizer of length

, where stands for the smallest integer
that is greater than or equal to .

Based on assumption A3), let us consider a FIR deconvolver
with the transfer function given by

(20)

where and are the first and last superscripted numbers,
respectively, of the tap coefficients, i.e., ’s, of the decon-
volver and where the length is taken
to be sufficiently large. Let be the -column vector con-
sisting of the tap coefficients (corresponding to the th output)
of the deconvolver defined by

(21)

(22)

where is the th element of matrix .
Inouye and Tanebe [20] proposed the MSEA for finding the

tap coefficient vectors, i.e., ’s, of the deconvolver , each
iteration of which consists of the following two steps:

(23)

(24)

where and stand for the results of the first and the
second step, respectively. Let be the -column vector
consisting of the consecutive inputs of the deconvolver de-
fined by

(25)

(26)

where is the th element of the output vector of the
channel in (16). Then, the correlation matrix (defined in [20,
(41) and (42)]) is represented as

(27)

and the fourth-order cumulant vector is defined by

(28)

whose th block element is the -column vector with th
element defined by

(29)

and is represented as

(30)
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where denotes the expectation of a random variable . We
note that the last term can be ignored in case of
for all , in which case for all .

In addition, we obtain (from [20, (32) and (39)])

(31)

We should note that the stationarity of the input process
(or assumption A2) ensures relation (31) and that rela-

tion (31) means that the vector obtained by (23) satisfies

(32)

Consider the batch algorithm in (23) and (24). Equation (24)
constrains a weighted norm of vector to equal one, and thus,
we assume that this constraint is always satisfied using a nor-
malization or an automatic gain control of at each discrete
(or sample) time . To develop an adaptive version of (23), we
must specify the dependence of each time and rewrite (23) as

(33)

On the other hand, a block-based adaptive algorithm for de-
signing adaptive filters is one of many efficient adaptive filtering
algorithms aimed at increasing convergence speed and reducing
the computational complexity just as the block-based least mean
square algorithm shown in [3, p. 347]. The basic principle of
the block-based algorithm for designing an adaptive filter is that
the filter coefficients remain unchanged during the processing of
each data block and are updated only once per block [3]. Sup-
pose is the block length. Then, the original discrete (or sample)
time is related to the th block of data as

(34)

The index is referred to as the block index. Following this
principle along with the notation in (34), we develop a block-
based adaptive MSEA for the blind deconvolution of the system
(16).

Let denote the block index. We can rewrite (33) as

(35)

Then, we should obtain recursion formulas for the block up-
dating of matrix and vector in (35), respectively

(36)

(37)

where

(38)

(39)

Here, and denote the estimates of
and at time , respectively, and is

a positive number close to, but greater than zero, which ac-

counts for some exponential weighting factor or forgetting
factor [3]. For example, we may take .

Because we consider the case when the number of inputs
is less than the number of outputs , i.e., , the correla-
tion matrix is not of full rank and a singular matrix [7].
Therefore, we may apply the matrix pseudoinversion lemma to
the recursive equation (36).

By applying Theorem 1 to (36) for obtaining a recursive for-

mula for the block updating of pseudoinverse ,
we have the following lemma.

Lemma 2: Let , , , , , , and in Lemma 1 be
respectively defined as

(40)

(41)

(42)

(43)

(44)

(45)

(46)

Then, substituting these definitions into Lemma 1, the recur-

sion for the pseudoinverse of the correlation
matrix from is explicitly expressed as follows:

(47)

where and are respectively defined by

(48)

(49)

with

(50)

where

(51)

(52)

These equations are initialized by their values appropriately
selected or calculated by the batch algorithm in (23) and (24) at
initial block index and used for .

The proof of Lemma 2 is easy and follows from Lemma 1
along with simple calculations.

Based on Lemma 2 along with (35)–(39), we have the fol-
lowing theorem which gives a recursion formula for the block
updating of the tap vector for .
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Theorem 2: The recursion for is

(53)

where

(54)

(55)

(56)

(57)

Here, is a positive constant greater than and
is calculated from (47). The proof of Theorem 2 is shown in
Appendix E.

Remark 5: The recursive algorithm proposed by Shalvi and
Weinstein [21] can be shown to correspond to the particular case
of Theorem 1 where , , and the correlation
matrices ’s are nonsingular.

Remark 6: The case where the length of the block of the
matrix pseudoinversion lemma is restricted to the case when the
added matrix is a single dyad (i.e., is a column vector)
[7]–[9]. An illustrative example and the simulation results of the
matrix pseudoinversion lemma in this case and the application
to adaptive blind deconvolution of MIMO systems are shown in
[7]–[9].

IV. SIMULATION RESULTS

To demonstrate the usefulness of the matrix pseudoinversion
lemma, some computer simulations for obtaining the pseudoin-

verse of the correlation matrix in (36) by
using Lemma 2 were conducted. We note here that we do not use
Theorem 2, because we are interested not in finding ’s but

in calculating . Results of calculating ’s and recov-
ering original sources ’s are found in [14].

We considered a MIMO system with two inputs
and five outputs and assumed that the system

is of FIR and the length of channel is three, i.e., ’s in (17)
were set to be

(58)

Two source signals were 4- and 8-PSK signals, respectively.
The length of the equalizer is seven . For obtaining

the pseudoinverse of the correlation matrix, the initial values of
, , and were estimated using 30 data samples. The value

of was chosen as for each . As a measure of
performance, we use the following sum of the Frobenius norms
of the four error matrices:

(59)

where denotes the Frobenius norm of matrix and
, , , and , respectively, are the error ma-

trices defined by using the Moore–Penrose conditions as follows
[16]:

(60)

(61)

(62)

(63)

In this application, from A2), the input process is sta-
tionary, and this means that the random process is also
stationary. Thus, it follows from (27) that belongs almost
surely (a.s.) (or with probability 1) to , i.e.,

a.s. (64)

This means that, from (38), (42), and (44)

(65)

Therefore, we can assume in this application that the compo-
nent matrix always vanishes, i.e., , and
we can use the recursion formula (47) for calculating the pseu-

doinverse at each iteration (or block index) .
We compared the performance of the proposed method (i.e.,

the method using the matrix pseudoinversion lemma) with the
performance of the method using the built-in function “pinv”
in MATLAB Version 7.1.0 for calculating the pseudoinverse

of correlation matrix . The pseudoinverses
are calculated iteratively (or recursively) for each iteration (or
recursion) number for the two methods.

Fig. 1 shows the performance results of the performance mea-
sure for the proposed method with (a) and (b)
and for the latter method (c) by using 500 data samples. The
almost converged values of the performance measure at dis-
crete time also are superimposed on the three figures.

We also compared the performances of the two methods in
computational complexity by using the built-in function “flops”
in MATLAB Version 5.2 and in execution time by using a per-
sonal computer with a 2.66-GHz processor and 3.4-GB main
memories used in simulation experiments.

Table I shows the average of the numbers of floating-point
operations (flops) over 100 independent Monte Carlo runs using
500 data samples of the outputs for each Monte Carlo run by
changing the length of the block from 1 to 4 and the length of
the deconvolver from 3 to 14.

Table II shows the average of the execution times over 100
independent Monte Carlo runs using 500 data samples of the
outputs for each Monte Carlo run by changing the length of the
block from 1 to 4 and the length of the deconvolver from 3
to 14.
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Fig. 1. Performance measure� of (a) the proposed method with � � �, (b) the
proposed method with � � �, and (c) the method using “pinv” �� � �� for the
time-invariant MIMO system.

It can be seen from Fig. 1(a) and (b) and Tables I and II that
the performance measure , the average of the numbers of
floating-point operations, and the average of the execution times
of the proposed method are better as the length of the block in-
creases for the same length of the deconvolver .

In the meantime, it can be seen from Fig. 1(b) and (c) that
the accuracy of the matrix pseudoinversion lemma is equivalent
to the built-in function “pinv.” However, it can be seen from
Tables I and II that the average of the numbers of floating-point
operations and the average of the execution times for the pro-
posed method are better than those for the method using built-in
function “pinv,” respectively.

The computational complexity of the method using the
built-in function “pinv” increases more than the computational
complexity of the proposed method when the length of the
deconvolver increases. We consider that one of reasons why
the matrix pseudoinversion lemma is superior to the built-in
function “pinv” in the numbers of floating-point operations
and the execution times is that it is not necessary to calculate
the pseudoinverse in Lemma 1, because the results of the

previous iteration can be used instead
of in Lemma 2.

Next, we considered a time-variant MIMO system, where the
system is the same as that in (58) except that the last matrix
of the impulse response of the channel was varied by adding
0.05 to all its elements at discrete time . In this case,
the random process is not stationary, i.e., .
Fig. 2(a) and (b) shows the performance results of the perfor-
mance measure for the proposed method and the method
using the built-in function “pinv” with and by
using 500 data samples of the outputs of the MIMO time-variant
system. The almost converged values of the performance mea-
sure at discrete time for both methods are superim-
posed on the two figures. Fig. 2(c) shows the values of the rank
of normalized by the length of the deconvolver in this case.

Fig. 2. Performance measure � of (a) the proposed method with � � � and
(b) the method using “pinv” �� � ��. (c) Values of ��� ���	 
��� for the time-
variant MIMO system.

It can be seen from Fig. 2(a) and (b) that the accuracy of the
matrix pseudoinversion lemma is a little worse than the built-in
function “pinv,” but the formula (14) of the matrix pseudoinver-
sion lemma can treat the changes of the channel.

From these results, the matrix pseudoinversion lemma is
useful to calculate the pseudoinverse of a correlation matrix
for block-based adaptive algorithms of blind deconvolution in
time-invariant MIMO systems and even time-variant MIMO
systems.

V. CONCLUSION

We have extended the matrix inversion lemma to the case
when the matrix in is singular and presented a
matrix pseudoinversion lemma together with some illustrative
examples. In order to show the usefulness of this lemma, we
applied it to develop a block-based adaptive superexponential
algorithm for the blind deconvolution of a MIMO system. It
has been shown through computer simulations that the matrix
pseudoinversion lemma is useful for block-based adaptive algo-
rithms of blind deconvolution in time-invariant MIMO systems
and even time-variant MIMO systems.

APPENDIX A
THE PROOF OF LEMMA 1

First, we consider the case when . Put

(66)

Since is Hermitian, it is unitarily diagonalizable, i.e., there
exist a unitary matrix and a diagonal matrix such that

(67)
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which is called the spectral decomposition (or eigenvalue de-
composition) of . In (67), the diagonal elements ’s are ar-
ranged in the decreasing order as

(68)

where . If , then
for . Thus, we have and partitioned as

(69)

(70)

where . Therefore, from (67), we have

(71)

Since , there exists such that

(72)

From (66), (71), and (72), we have

(73)

Here, we note the following properties of matrix pseudoinverses
[22]:

P1) If and are unitary, then

(74)

P2) If where and ,
then

(75)

P3) Let and let

(76)

be a rank decomposition of , i.e.,
. Then

(77)

Using (73) and the aforementioned properties, we have

(78)

The last equality in (78) comes from the fact that is
nonsingular, because is nonsingular. Using the matrix inver-
sion lemma [3], [23], we have

(79)
where is the identity matrix.

On the other hand, from (71), (72), and P1), we have

(80)

(81)

(82)

Using (72) and (78)–(82), we obtain

(83)

Equation (83) is equivalent to (4), because in this case
when .

Now we consider the proof of the proposition in the general
case where . The proof is carried out in two stages. At the
first stage, we get the pseudoinverse of the matrix defined
by

(84)

where denotes the direct sum of two matrices, i.e.,
if and . In the second stage, we

obtain the pseudoinverse of the matrix which is represented
as

(85)

where is the permutation matrix defined by

(86)

and is the identity matrix.
The first stage of the proof is carried out as follows. If is

of full column rank, then it follows from P3) that

(87)

It should be noted that (87) holds true even if is not of full
column rank (and, thus, even if ). This statement is
verified by using the singular-value decomposition (SVD) of the
matrix as follows. Let

(88)
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be an SVD of , where and are unitary and is a diagonal
matrix with diagonal elements for , where

. Then, it follows that

(89)

which yields from P1)

(90)

We can obtain the following from (88) and P1):

(91)

(92)

Since , it is clear from (90)–(92) that

(93)

Therefore, from (83), (84), (87), and P2), we have

(94)

Equation (94) is equivalent to (5) in the case where ,
because in this case [see (3) and (84)].

The second stage of the proof is carried out as follows. Since
, there exists

such that

(95)

From (72) and (95), we have

(96)

From (3), (71), and (96), we obtain

(97)

where

(98)

Using P1) and (97), we have

(99)

Then, becomes

(100)

where

(101)

Since

(102)

with

(103)

there exists a unitary matrix and a diagonal matrix such that

(104)

where , , and is a non-
singular diagonal matrix belonging to . Since

(105)

there exist and such that

(106)

Therefore, from (100), (104), and (106), we have

(107)

Put

(108)

Since , we have . Therefore

(109)

This means that, from (97) and (98)

(110)

which implies that, from (107) and (108)

(111)
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Therefore, is nonsingular. By a generalized matrix inversion
lemma in [3] and [23]

(112)

where

(113)

Here, we note that it can be shown that is also nonsingular
if is nonsingular (See Appendix B). Since ,
becomes

(114)

From (104)–(114) along with P3), we have

(115)

where we have used the following from (104) and (106):

(116)

(117)

Using (99) and (115) along with P3), we obtain

(118)

where we have used

(119)

(120)

The first equation (119) holds true, because P1) holds true and

(121)

The second equation (120) also holds true, because

(122)

On the other hand, from (106) and (117), we obtain

(123)

Similarly, we obtain

(124)

Furthermore

(125)

where we have used from (96)

(126)
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and (119). Similarly, we obtain

(127)

Using (123)–(125) and (127), we have the following from (114):

(128)

If is nonsingular, we obtain the inverse of as follows:

(129)
with

(130)

This completes the proof.

APPENDIX B
THE PROOF OF THE NONSINGULARITY OF MATRIX

We use the following lemma.
Lemma B1: Let

(131)

(132)

for brevity. Then, the following statements hold true.
1) is a Hermitian matrix such that .
2) is the orthogonal projection of onto .

Proof: It is clear from the definitions that and are
both Hermitian. Because

(133)

we have

(134)

where we used

(135)

Let

(136)

(137)

for brevity. Then, it follows from (134) along with the defini-
tions of and that

(138)

It follows from (133) and the definition of that

(139)

where we used , , and

. It is clear from (139) that is the

orthogonal projection of onto . This completes the
proof.

Now let us prove the regularity of . We use the following
lemma on the inverse of the block matrix.

Lemma B2: Let , , ,
, and , where we assume

exists. If exists, then

(140)

where and .
This lemma is found in [23, p. 656]. It follows from (128) and

the definitions of and that

(141)
Let

(142)

for brevity. Instead of showing the nonsingularity of , we
show that exists. Applying Lemma B2 to in (142), we
show that there exists the inverse of defined by

(143)

Applying Lemma B1 to in (143), becomes

(144)

We shall show that . Therefore, we suppose

(145)

Then, it follows from (144) that

(146)
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Because can be decomposed as

(147)

where and , it follows from
(146) that

(148)

which gives the following, along with (146) and (147)

(149)

Since , this gives

(150)

which is equivalent to

(151)

Applying 1) of Lemma B1 to (151), we have

(152)

Therefore, we obtain , which shows . This
completes the proof of the nonsingularity of .

APPENDIX C
THE PROOF OF THEOREM 1

First, we consider case 1). If , then and are
represented from (7) and (8), respectively, as follows:

(153)

(154)

Then, from (6), (153), and (154), we have as follows:

(155)

which is identical to (4).

Second, we consider case 2). If and , then
and are represented from (7) and (8), respectively, as

follows:

(156)

(157)

Then, from (6), (156), and (157), we have as follows:

(158)

which is identical to (5). This completes the proof.

APPENDIX D
ILLUSTRATIVE EXAMPLES

We consider a single matrix with three different values of
matrix as follows:

(159)

(Case 1)

(160)

(Case 2)

(161)

(Case 3)

(162)
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where and are a matrix and a vector which are defined
by

(163)

(164)

Then, putting , the matrix is calculated for
each vector , as follows:

(Case 1)

(165)

(Case 2)

(166)

(Case 3)

(167)

Since is the orthogonal projection of onto and
is the orthogonal projection of onto [15],

[16], it follows from (2) that the matrix is decomposed into
two matrices and by using the following relations:

(168)

(169)

where

(170)

(see the matrix pseudoinversion lemma for in [9])
and is the 4 4 identity matrix.

First, we consider the first case, i.e., case 1. From
(168)–(170), we have

(171)

where we note that . Therefore, the pseudoin-
verse of the matrix is obtained by applying
(4) which is the case when in Lemma 1 as follows:

(172)

As an evaluation of the value of the pseudoinverse , we
consider the following error matrices defined by using the
Moore–Penrose conditions [16], [22]:

(173)

(174)

(175)

(176)

We note that all the error matrices vanish when the value of
is correct. Substituting (165) and (172) into (173)–(176), we

obtain

(177)
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(178)

(179)

(180)

From (177)–(180), these results prove that the value of the pseu-
doinverse is correct in Case 1.

Similarly, we obtain the pseudoinverse and evaluate its
value in the second and third cases, i.e., Cases 2 and 3. From
(168)–(170), two matrices and are obtained in each case
as follows:

(Case 2)

(181)

(Case 3)

(182)

The pseudoinverse of the matrix is calcu-
lated from (5) in Case 2 and from (6)–(10) in Case 3 as follows:

(Case 2)

(183)

(Case 3)

(184)

where Case 2 corresponds to the case when and
in Lemma 1 and Case 3 corresponds to the case

when and in Lemma 1.
Then, the values of the pseudoinverse are evaluated by

using the error matrices in (173)–(176). Because all the error
matrices become zero, it can be seen that the values of the pseu-
doinverse are correct in both cases.

Therefore, these examples may convince ourselves that
Lemma 1 is true.

APPENDIX E
THE PROOF OF THEOREM 2

Substituting (37) and to (35), we have

(185)

On the other hand, from (32) and (35)–(39), we obtain the fol-
lowing:

(186)

Substituting (186) to (185), the recursion formula for the time
updating of the tap vector is obtained as follows:

(187)

where

(188)

This completes the proof.
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