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Abstract— In communication systems which used filter
bank precoders with zero padding (ZP) at the transmitter,
the effect of an FIR channel can be equalized without the
use of IIR equalizers. In this paper a number of observa-
tions are made with regard to the noise gain created by
the equalizer at the receiver. If the number of received
samples per block actually utilized in equalization is
reduced to the number of transmitted samples per block,
then the noise gain can be very large for channels with
zeros outside the unit circle. As the number of utilized
received samples increases the situation improves. Most
importantly, it is shown that when all the redundant
samples in each block are utilized for estimation of
transmitted symbols then the noise gain is not sensitive
to whether the channel zeros are inside, on, or outside
the unit circle, and depends only on the FIR channel
autocorrelation.'

I. INTRODUCTION

The use of filter bank precoders in digital communications
has been well researched in the past decade. Given an FIR
channel C'(z) Zi:o c(n)z™", a filter bank precoder
based on zero-padding (ZP) introduces a block of L zeros at
the end of each length-M block of the input symbol stream.
[4], [3], [6]. This eliminates interblock interference and it
is possible to equalize FIR channels without the use of IIR
filters. Assuming that the precoder at the transmitter does not
perform any other transformation besides inserting the block
of zeros, it can be shown that the nth received block y(n)
of size P = M + L is given in terms of the nth transmitted
block s(n) of size M by

y(n) = As(n) +q(n) (1)

where A is the P X M full-banded Toeplitz matrix of channel
coefficients:

_ —-n

c(0) 0 0
c(1l)  ¢(0) 0
A= |l (2)
0 L)
L0 o )]
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and q(n) represents additive channel noise. Since A has
rank M (assuming C(z) is not identically zero), it has a
left inverse A#. Premultiplying Eq. (1) by A%, we get

A”y(n) =s(n) + A¥q(n) (3)
The quantity on the left, which can be computed from
received noisy data, therefore represents an estimate of the
nth block s(n) of transmitted symbol stream s(n). We can
in fact perform such estimation by retaining less than P
components from y(n). For example, using the subscript K
to indicate that the first K rows of vectors and matrices have
been retained, we get

(4)

As long as K > M and ¢(0) # 0 the matrix A has rank
M and a left inverse A% exists. The quantity A%y (n) then
serves as an estimate of s(n).

yx(n) = Axs(n) + ar(n)

In this paper we study the effect of channel noise on these
estimates as K grows from M to P. As one would expect, the
noise gain decreases as K increases. We quantify this. When
K takes the smallest possible value (K = M), the noise gain
is severe for FIR channels with zeros outside the unit circle.
We will see that if K = P (largest possible value) then the
noise gain can be very small even for such channels. In fact,
for K = P, we show that the noise gain becomes insensitive
to whether the channel zeros are inside, on, or outside the
unit circle. All notations in this paper are as in [6].

II. NOISE AMPLIFICATION AND FROBENIUS NORM

With K samples in a block retained, the error in the

— . A
estimation of s(n) is clearly ex (n)=A%qx (n). The mean
square reconstruction error is

Ereeo = Tr( AL Elax(mal )(AD)) = o2l AL
(5)
where it is assumed that E[qx (n)ql.(n)] = o21. Here || T||
denotes the Frobenius norm of T, defined by [1], [2],

ITIPZ > " [ Tim|” = Tr(T'T) = Tr(TTY)  (6)

In practice, since there are M symbols in each block (i.e.,
ex(n) has M components) we divide (5) by M to get the
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average reconstruction error variance

sl A%
M

g’reco _

Ble(n)]? = =xee2 =

where e(n) = 5(n) — s(n) is the error in each sample of
scalar the symbol stream s(n).

When K = M (smallest possible K), the matrix Ay is
square, lower triangular, and Toeplitz. Only M components
of y(n) are used to estimate s(n). The inverse of Axs is
also a lower triangular Toeplitz matrix, with the coefficients
c(n) replaced by the coefficients d(n) of the inverse filter
1/C(z) = >0 ,d(n)z~™. If C(2) has a zero outside the
unit circle, then the coefficients d(n) are unbounded. This
means that the elements in A}, can get large, and the norm
| A5/ || can be very large as we shall demonstrate. Retaining
only the first M samples of y(n) is therefore not judicious.

When K = P (largest possible K), the matrix Ax = A
becomes a full banded Toeplitz matrix. We will show in
this case that the noise amplification factor || A#||> does not
change if a zero of C(z) inside the unit circle is replaced
with its reciprocal conjugate (which is outside)! We also
show that || A#||? depends only on the autocorrelation of the
channel. Thus, using all the P compoments of y(n) makes
the estimation of s(n) quite robust to the zero-locations of

C(z).

Expression in terms of singular values. It is well-known
that the minimum-norm left inverse or MNLI of A has the
closed form expression [1]

A* = (ATA) AT (7)
and can therefore be readily calculated. It is also known that
if o denotes the singular values of A then

M-—1 M-1
1
2 2 2
AP =) of, and JAFP=3" ()
k=0 k=0 F

Summarizing, the reconstruction error can be expressed as:

M—-1
Ele(n)|* = gllATIE ol N~ 1 (9)
M M o}

bl

0

where 02 is the variance of the channel noise g(n), and

oy are the singular values of the channel matrix A (ie.,
o2 are eigenvalues of ATA). When the full banded Toeplitz
matrix A is replaced with the partial matrix Ak, the same
expressions hold with o, now representing the singular values
of A K-

III. FROBENIUS NORM OF LEFT INVERSE AS A g
GROWS TALLER

We now make an important observation. Let A g be K X
M with K > M and assume its rank is M. Define the taller
matrix

Ax }

Bo[A

(10)
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where a # 0 is a row vector. Since ||B||? is the total energy
of the elements of B, it is obvious that

Bl > [[Ax] (11)

Let AE be the unique minimum-norm left inverse of A g
and B¥ the unique minimum-norm left inverse of B, so that
AﬁAK = I, B#B = I,;. We now claim the following:

MLemma 1. Frobenius norm of left inverse. In the above
set up,

1B < lAZ | (12)

That is, even though B# has more columns than Af{
(because B has more rows than A k), the norm of B# cannot
be larger than that of Aﬁ. &

Proof. Observe first that the matrix [A% 0] is a valid
left inverse for B because

Ak

(A% 01B=(Af o] |4

] —APAg =1y

The left inverse [A% 0] clearly has the same norm as
Aﬁ (because the extra columns of zeros do not change
the energy in the elements). This shows that there exists
at least one solution to the left inverse of B which
has identical norm as Aﬁ. So the minimum norm left
inverse B¥, by its very definition, satisfies (12). v/ 7 7

IV. APPLICATION IN EQUALIZATION OF CHANNELS

Consider again the equation for the received block of data
given by (4), which applies when the first K samples in the
block are retained. Let us take a closer look at A k. For the
example where M = 3 and L = 2, we have

0) 0 0
c0) 0 0
Av= o)) «0) 0 |, A= D D A
«2) (1) ) 0 o2 o)
c0) 0 0
c(l) ¢(0) o0
and As = |c(2) c(1) c(0) (13)
0 ¢(2) (1)
0 0 <2

Notice the following properties of these matrices: (a) Ak is
lower triangular and Toeplitz for all K, (b) for K = M the
matrix A g is also a square matrix, and (c¢) for K = P the
matrix A g is full banded Toeplitz. Since we can write

]

X
it follows that the left inverse of A ki1 has a smaller
Frobenius norm than A i (Lemma 1). This shows that

Ak = [ (14)

5’reco,K+1 S Ev'eco,K (15)

that is, the reconstruction error can only improve as K
increases. As we make A taller and taller, that is, as we
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use more and more output samples from the block y(n), the
effect of channel noise becomes smaller and smaller, as one
would intuitively expect.

Example 1. Effect of making the matrix taller.
Let

Oz) =142z 45272 +1027% - 27*

and M = 8. Since P = M + L = 12, the matrix Ax has 8
columns, and the number of rows K can be 8, 9, 10, 11, or
12. For each of these cases we have calculated || A% ||/M:

K IAZI2/M | |A%|? aB
(No. of rows) (normalized)
8 2.4360 x 1073 0
9 1.0201 x 103 —3.78
10 2.8898 x 1072 —9.26
11 1.0181 x 1072 —53.79
12 1.0168 x 1072 —53.79

Notice how the norm decreases dramatically as the number
of rows is increased from 10 to 11. Thus the channel noise
amplification is improved by about 45 dB (53.79—9.26) if we
keep eleven rows of A# instead of ten! In some examples,
there is similarly a jump in quality as the number of rows
K increases from M to M + 1. For example, try C(z) =
4—202"" 433272 —2027° + 427" with M =38.

V. TOEPLITZ PROPERTY OF ATA

Consider the full size (P x M) channel matrix (2). If we
compute the product R = AT A explicitly, we will find that it
is a Hermitian, positive definite, and Toeplitiz matrix. That is,
it is a valid autocorrelation matrix for a fictitious wide sense
stationary random process. For example if M = 4,L = 2,
and C(z) = 1+ 227" + 4272 then

1000
2 1 0 0 21 10 4 0
l4a 210 i |10 21 10 4
A=lg 4 2 1| ad AA=1" 75 21 10
00 4 2 0 4 10 21
000 4

This result holds for any M and L, and is a consequence of
the full-banded Toeplitz property of A. But if Ax is only
a ?artial matrix obtained by dropping rows from A, then
A, Ak is not necessarily Toeplitiz. Example:

K
1000 21 10 4 0
2100 10 21 10 4
Ax=1]4 2 1 0| =>AlAxk=
4 10 21 10
0 4 21 0 4 10 5
00 4 2

Thus A}(A x is Toeplitz for K = P but not necessarily so
for smaller K.
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Proof of Toeplitz property. To prove that AT A is Toeplitz
when A is full banded Toeplitz, notice that the mth
column of A is the full impulse response c¢(n) shifted
down by m. Thus the (k, m)-element of ATA is

[ATA]jm = Zc*(n —k)e(n—m) =r(k—m)

n

where 7"(4)é >, c(n)c*(n — £) is the autocorrelation
of ¢(n). Since [AT Ay, depends only on the difference
k — m, it follows that ATA is Toeplitz. vVV

VI. CONSEQUENCES OF TOEPLITZ FORM OF ATA

We now point out some of the important consequences that
result from the Toeplitz property of ATA.

1. Frobenius norm. Since the diagonal elements of ATA
are all equal to (0), it follows that
IA|* = Tr(ATA) = Mr(0)

where 7(0) = |c(n)|*. Thus

JAl? _

L
j— 2 j—
% r(0) = E |e(n)|” = channel energy,  (16)
n=0

and is independent of depend M. Thus, as the size of the full
banded Toeplitz matrix A increases, ||A||*/M is fixed.

2. InsensitivitLy to channel phase. Given an FIR channel
-1

C(z) =c(0)][,,_,(1 — 27 "2), define a new channel
Z* —271 L
Cnew(z) = C(O)lrjzi_lzm H(l - zflzk)
k=1

This is an FIR channel with the mth zero z,, replaced by
1/z;,, and the magnitude response is unchanged:

|Crew(e™)[* = |C(7)?

That is, ¢(n) and cnew(n) have the same autocorrelation. So,
even though the full banded Toeplitz matrix A is different for
C(z) and Chew(2), the matrix ATA is identical for them.

3. Zero locations of channel, and noise gain. Since ATA is
the same for C(z) and Cyrew (2), it follows that | A% || (which
depends only one the eigenvalues of ATA, see Eq. (8)) is
also unchanged. Since the reconstruction error at the receiver
has the amplification factor ||A%||>/M (see Eq. (9)), it then
follows that the channel noise amplification is insensitive to
whether the zeros of the channel are inside or outside the unit
circle. This result is true only as long as the receiver uses all
P noisy samples in every block for the identification of the
transmitted symbols. By contrast, if the receiver had used
only M of the received samples, then the equalization would
be equivalent to inverting a square matrix (lower triangular
Toeplitz matrix A s, see examples in Eq. (13)). In this case,
zeros of C(z) outside the unit circle would create a large
noise gain as we shall soon demonstrate.
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4. Time reversed channel, and noise gain. As an ex-
treme example, suppose we define a time reversed channel
Chrew(2) = Zizo c*(L —n)z~™. If C(z) has all its zeros
inside the unit circle, then Crew(2) has all zeros outside.
And yet, the equalizer at the receiver performs equally well
for both systems because the channel noise gain ||A%||%/M
is identical for both the systems.

5. Channel with unit circle zeros. If an FIR channel
has unit circle zeros, then the inverse 1/C(z) is unstable
(even if we are willing to accept noncasual inverses). Thus
there is no stable equalizer at all (if there is no redundancy
like zero-padding), and the channel noise is amplified in an
unbounded manner by 1/C(z). But in a zero padded system,
the equalization works perfectly well: the full banded matrix
A still has full rank, so o > 0 for all 4, and the noise gain
| A#||?/M is finite.

Example 2: Channels with zeros outside unit circle.
Consider a channel with order L = 3: C(z) = 1+ 27 +
0.312724-0.032 2. The three zeros are inside the unit circle:
z1 = —0.3,2z2 = —0.5, and 23 = —0.2. Choose M = 8
so that P = M + L = 11. Then the size of Ak can be
K =8,...,11. The calculated values of ||A%||>/M are:

K | |A%IP/M
8 2.37
9 2.05
1 2.02
1| 202

The noise gain therefore decreases only slightly as we in-
crease the size of A k. Now consider the channel C.c, (2) =
0.03 + 0.31z7 ! + 272 + 273, which is the time reversed
version of C'(z). This has all the zeros outside the unit circle.
Calculations show the following:

K | |AZIP/M
8 | 2.03 x 103
9 | 1.30 x 108
10 | 3.03 x 103
11 | 2.02

where the fractional part has been neglected. For Chrey(2)
since the zeros are outside the unit circle, [|A%||? is very
large for K = M, M + 1, and M + 2. But for the full size
matrix A with K = 11, the quantity ||A%||? is identical
for C(z) and Crev(2) as expected.

Even for the simple example C(z) = 1 + 0.5z7" and
Crev(z) = 0.54 27", a similar thing happens. For M = 8 if
we let K = M, then HA}%HQ/M = 1.28 for C(z), whereas
A% |2 /M = 1.46 x 10* for Cyey(2)! With K = M + L =
9, ||A% /M = 1.22 for both C(2) and Chew(2).

1

Example 3: Channels with zeros on the unit circle.

Consider the channel C'(z) = Z;:o 2z~ ™ which has all seven
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zeros on the unit circle at the points z, = eTIImRIT 0 <
k < 6. We have L = 7, and choosing M = 8 we have
P = M + L = 15. Calculations show the following:

K| |A%IP/M
8 1.87
9 1.75
10 1.59
11 1.45
12 1.31
13 1.18
14 1.05
15 0.89

Thus as K increases the quantity [|A%||> gets smaller
though not as dramatically as the case where the zeros of
C(z) are outside the unit circle. For unit circle zeros with
higher multiplicity, large K becomes important: let C'(z)
(14 271)® which has three zeros at z = —1. With M = 8
so that P = M + L = 11, here are the calculated values:

K| |ALIP/M
8 734.25
9 21.03

5.03
11 3.81

Note the major improvement as soon as K exceeds M.

VII. CONCLUDING REMARKS

The fact that the performance of the ZP equalizer is
insensitive to whether the FIR channel has zeros inside, on, or
outside the unit cirlce is intriguing. Certain generalizations of
this result are still open. For example, in practice the precoder
not only inserts zeros, it also performs a linear transformation
of s(n). The equalizer at the receiver is chosen to be either a
zero-forcing or an mmse equalizer [4]. It will be interesting
to see how the results of this paper are modified in these
more general situations.
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